On Mobile Augmented Reality Applications based on Geolocation

Thibaud MiCHEL

Supervisor:	Nabil Layaïda	(Tyrex)
-------------	---------------	---------

Co-Supervisors:	Hassen FOURATI	(NeCS)
	Pierre Genevès	(Tyrex)

Funded by LabEx PERSYVAL-Lab

Université Grenoble Alpes INRIA, LIG, GIPSA-Lab

November 10th, 2017

Introduction			
• 00 00			
Augmented Reality			

Augmented Reality

Wikipedia Definition

Augmented reality (AR) is a live view of a real-world environment whose elements are "augmented" by computer-generated or extracted from real-world input such as sound, video, graphics.

Introduction			
00000			
Augmented Reality			

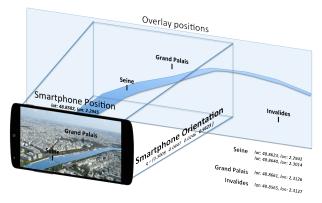
Augmented Reality

Wikipedia Definition

Augmented reality (AR) is a live view of a real-world environment whose elements are "augmented" by computer-generated or extracted from real-world input such as sound, video, graphics.

Augmented Reality Supports

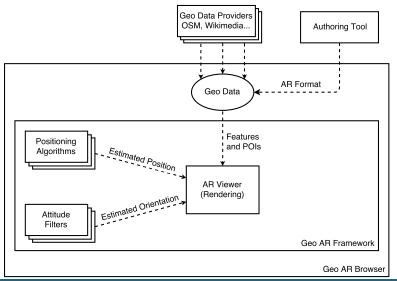
Head Mounted Devices



Smartphones/Tablets

Introduction			
Augmented Reality			

Two approaches of Augmented Reality


- Vision-based (using camera and accelerometer) [Tracking or SLAM]
- ► Geolocation-based (using MEMS sensors, GPS...) [Geo AR]

Example of Geo AR from Eiffel Tower (Paris) using a smartphone

Introduction			
00000			
Augmented Reality			

Geo AR Process Overview

Introduction			
Motivations			

Motivations

Objective

We want to study the feasibility of Geo AR with commodity smartphones and existing infrastructures in both indoor and outdoor contexts.

Outdoor: First experiments show a big lack of reliability.

- Can we identify the sources of the problem?
- Can we quantify with precision the rendering error?

Indoor: What about the feasibility?

- Are indoor geolocation techniques accurate enough for this purpose?
- Should they need to be improved? Can we do it?

Introduction			
00000		00	
Motivations			
<u> </u>			

Open problems

1 No comparative testing method for orientation filters.

2 No comparative testing method for geolocation algorithms.

So assessment on how orientation/geolocation estimation errors impact AR Rendering.

Introduction			
Motivations			

No comparative testing method for orientation filters.

- F
- Contribution 1: Benchmark and study of attitude estimation filters

2 No comparative testing method for geolocation algorithms.

So assessment on how orientation/geolocation estimation errors impact AR Rendering.

Introduction ○○○○●			
Motivations			

No comparative testing method for orientation filters.

- Contribution 1: Benchmark and study of attitude estimation filters
- Contribution 2: Filter against magnetic perturbations

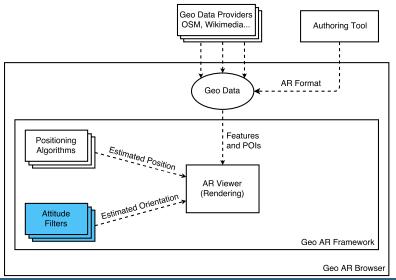
2 No comparative testing method for geolocation algorithms.

On assessment on how orientation/geolocation estimation errors impact AR Rendering.

Introduction ○○○○●			
Motivations			

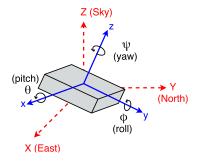
1 No comparative testing method for orientation filters.

- Contribution 1: Benchmark and study of attitude estimation filters
- Contribution 2: Filter against magnetic perturbations
- 2 No comparative testing method for geolocation algorithms.
 - Contribution 3: Benchmark and study of positioning estimation techniques
- On assessment on how orientation/geolocation estimation errors impact AR Rendering.


Introduction ○○○○●			
Motivations			

1 No comparative testing method for orientation filters.

- Contribution 1: Benchmark and study of attitude estimation filters
- Contribution 2: Filter against magnetic perturbations
- 2 No comparative testing method for geolocation algorithms.
 - Contribution 3: Benchmark and study of positioning estimation techniques
- No assessment on how orientation/geolocation estimation errors impact AR Rendering.
 - Contribution 4: An evaluation method to quantify with precision the Geo AR rendering errors


Attitude Estimation		

Geo AR Process Overview

	Attitude Estimation		
Background			
A			
Attitude			

Attitude is the orientation of an Object with respect to the Earth local frame. It is mainly expressed by a rotation matrix, a quaternion or Euler angles.

The Object frame with respect to the Earth local frame.

Many estimation algorithms/filters exist:

- For different application domains: aerospace, UAV, foot-mounted, handheld...
- Of different types: Kalman filters or observers.
- With different assumptions: External acceleration, magnetic perturbations, sensors bias...

	Attitude Estimation		
	00000000		
Background			

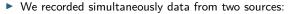
Attitude Estimation on Smartphones

Problem

Most of the filters are not well suited for Geo AR on smartphones.

Specific challenges

- Magnetic perturbations, they are omitted in most existing filters.
 - Earth can be modeled as a dipole (e.g. in Grenoble [2017], the magnetic field magnitude is 47 μT)
 - Perturbations are deviations on the measures of Earth magnetic field which are caused by metallic objects, cables, walls...


- Rendering stability is a must-have for AR.
- Smartphone is free, there is no equation of motions.

	Attitude Estimation			
	000000000			
Contribution 1: Bench	nmark and study of attitude estima	ation filters		

Contribution 1: A Motion Lab-based Testing Method to Ground Truth

In EquipEx Kinovis, Inria, France

- Reference: A motion capture system equipped with 20 infra-red cameras with a precision error < 0.5°.
- Measurements: Sensors (accelerometer, gyroscope, magnetometer) from a smartphone.
- Benchmark numbers:
 - 126 trials of 2 minutes
 - 3 test subjects
 - 3 smartphones each (iPhone 4S, iPhone 5, LG Nexus 5).
 - 8 typical motions (texting, phoning, swinging, augmented reality...)

	Attitude Estimation			
	000000000			
Contribution 1: Benchm	nark and study of attitude estim	ation filters		

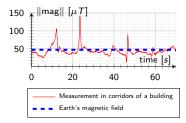
Filters used and Complete Study

▶ 9 algorithms^{*} and their variants (35) have been compared.

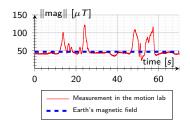
* Basic EKF, Sabatini et al. (2006), Choukroun et al. (2006), Mahony et al. (2008), Martin et al. (2010), Madgwick et al. (2011), Fourati et al. (2011), Renaudin et al. (2015) and from built-in device.

- A complete study has been made on:
- Calibration
- Kalman noise
- Comparison with built-in filters
- Impact on Augmented Reality

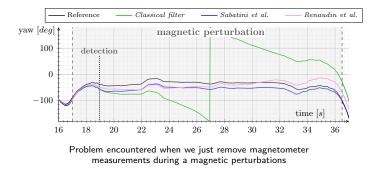
- Bias consideration
- Typical motions
- Mag. perturbations impact on Euler angles
- Impact of mag. perturbations


- Filter parameters
- Empirical computational cost
- Sampling rates

	Attitude Estimation			
	00 00 00000			
Contribution 1: Bench	mark and study of attitude estim	ation filters		


Introducing Magnetic Perturbations

- In the room, magnetic perturbations are low (\sim 40 to 43 μ T).
- Magnetic boards are used to simulate indoor building perturbations.



	Attitude Estimation		
	0000000000		
Background			

Dealing with Magnetic Perturbations

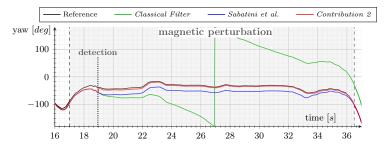
- Detect when the perturbation occurs and remove magnetometer measurements
 - Measured magnitude is far away from the Earth's magnetic field (Sabatini et al., 2006)
 - Variance of measured magnitude on a small window ($\sim 0.2 \ s$) is high. (Renaudin et al., 2015)

	Attitude Estimation		
	0000000000		
Background			

Dealing with Magnetic Perturbations

- Reduce impact of perturbation on only 1 axis
 - Creation of a new observation vector (c) from cross multiplication between accelerometer and magnetometer measurements (Martin et al., 2010)

Pitch and Roll angles are not impacted by magnetic perturbations.



Filter using new observation vector approach, virtual horizon is not tilted.

	Attitude Estimation		
	0000000000		
Contribution 2: Filter a	gainst magnetic perturbations		

Contribution 2 (Michel et al., PerCom'17)

- We reused the best of other filters (in terms of AR).
- We save sensors measurements in a sliding window. Then, when a perturbation is detected, re-run filter with values from the sliding window without magnetometer data.
- 3 We enforce minimal durations for magnetic field update phases.
- **④** Proposed approach can be plugged in any existing filter.

	Attitude Estimation ○○○○○○○●○		
Results for Both Contrib	utions		

- Precision error between the ground truth and estimated attitude is reported using the <u>Mean Absolute Error</u> on:
 - Quaternion Angle Difference (QAD)
 - Euler Angles (Yaw, Pitch and Roll).

A difference of less than 0.5° is not significant.

Stability (Stab.) is reported using a Moving Standard Deviation with a window of 0.1s.

	QAD (°)	Yaw (°)	Pitch (°)	Roll (°)	Stab. (°)
Classical Filter	31.8	28.9	6.9	7.9	0.71
Martin et al.	34.4	34.1	0.9	1.2	1.18
Sabatini et al.	14.6	14.3	1.7	1.9	0.34
Built-in	29.0	28.9	1.1	1.2	1.04
Contribution	10.1	9.8	1.2	1.5	0.25

	Attitude Estimation ○○○○○○○●○		
Results for Both Contrib	utions		

- Precision error between the ground truth and estimated attitude is reported using the <u>Mean Absolute Error</u> on:
 - Quaternion Angle Difference (QAD)
 - Euler Angles (Yaw, Pitch and Roll).

A difference of less than 0.5° is not significant.

► **Stability** (Stab.) is reported using a Moving Standard Deviation with a window of 0.1*s*.

	QAD (°)	Yaw (°)	Pitch (°)	Roll (°)	Stab. (°)
Classical Filter	31.8	28.9	6.9	7.9	0.71
Martin et al.	34.4	34.1	0.9	1.2	1.18
Sabatini et al.	14.6	14.3	1.7	1.9	0.34
Built-in	29.0	28.9	1.1	1.2	1.04
Contribution	10.1	9.8	1.2	1.5	0.25

	Attitude Estimation ○○○○○○○●○		
Results for Both Contrib	utions		

- Precision error between the ground truth and estimated attitude is reported using the <u>Mean Absolute Error</u> on:
 - Quaternion Angle Difference (QAD)
 - Euler Angles (Yaw, Pitch and Roll).

A difference of less than 0.5° is not significant.

► **Stability** (Stab.) is reported using a Moving Standard Deviation with a window of 0.1*s*.

	QAD (°)	Yaw (°)	Pitch (°)	Roll (°)	Stab. (°)
Classical Filter	31.8	28.9	6.9	7.9	0.71
Martin et al.	34.4	34.1	0.9	1.2	1.18
Sabatini et al.	14.6	14.3	1.7	1.9	0.34
Built-in	29.0	28.9	1.1	1.2	1.04
Contribution	10.1	9.8	1.2	1.5	0.25

	Attitude Estimation ○○○○○○○●○		
Results for Both Contrib	utions		

- Precision error between the ground truth and estimated attitude is reported using the <u>Mean Absolute Error</u> on:
 - Quaternion Angle Difference (QAD)
 - Euler Angles (Yaw, Pitch and Roll).

A difference of less than 0.5° is not significant.

► **Stability** (Stab.) is reported using a Moving Standard Deviation with a window of 0.1*s*.

	QAD (°)	Yaw (°)	Pitch (°)	Roll (°)	Stab. (°)
Classical Filter	31.8	28.9	6.9	7.9	0.71
Martin et al.	34.4	34.1	0.9	1.2	1.18
Sabatini et al.	14.6	14.3	1.7	1.9	0.34
Built-in	29.0	28.9	1.1	1.2	1.04
Contribution	10.1	9.8	1.2	1.5	0.25

	Attitude Estimation ○○○○○○○●○		
Results for Both Contrib	utions		

- Precision error between the ground truth and estimated attitude is reported using the <u>Mean Absolute Error</u> on:
 - Quaternion Angle Difference (QAD)
 - Euler Angles (Yaw, Pitch and Roll).

A difference of less than 0.5° is not significant.

► **Stability** (Stab.) is reported using a Moving Standard Deviation with a window of 0.1*s*.

	QAD (°)	Yaw (°)	Pitch (°)	Roll (°)	Stab. (°)
Classical Filter	31.8	28.9	6.9	7.9	0.71
Martin et al.	34.4	34.1	0.9	1.2	1.18
Sabatini et al.	14.6	14.3	1.7	1.9	0.34
Built-in	29.0	28.9	1.1	1.2	1.04
Contribution	10.1	9.8	1.2	1.5	0.25

	Attitude Estimation ○○○○○○○●○		
Results for Both Contrib	utions		

- Precision error between the ground truth and estimated attitude is reported using the <u>Mean Absolute Error</u> on:
 - Quaternion Angle Difference (QAD)
 - Euler Angles (Yaw, Pitch and Roll).

A difference of less than 0.5° is not significant.

Stability (Stab.) is reported using a Moving Standard Deviation with a window of 0.1s.

	QAD (°)	Yaw (°)	Pitch (°)	Roll (°)	Stab. (°)
Classical Filter	31.8	28.9	6.9	7.9	0.71
Martin et al.	34.4	34.1	0.9	1.2	1.18
Sabatini et al.	14.6	14.3	1.7	1.9	0.34
Built-in	29.0	28.9	1.1	1.2	1.04
Contribution	10.1	9.8	1.2	1.5	0.25

	Attitude Estimation ○○○○○○○●○		
Results for Both Contrib	utions		

- Precision error between the ground truth and estimated attitude is reported using the <u>Mean Absolute Error</u> on:
 - Quaternion Angle Difference (QAD)
 - Euler Angles (Yaw, Pitch and Roll).

A difference of less than 0.5° is not significant.

Stability (Stab.) is reported using a Moving Standard Deviation with a window of 0.1s.

	QAD (°)	Yaw (°)	Pitch (°)	Roll (°)	Stab. (°)
Classical Filter	31.8	28.9	6.9	7.9	0.71
Martin et al.	34.4	34.1	0.9	1.2	1.18
Sabatini et al.	14.6	14.3	1.7	1.9	0.34
Built-in	29.0	28.9	1.1	1.2	1.04
Contribution	10.1	9.8	1.2	1.5	0.25

	Attitude Estimation ○○○○○○○●○		
Results for Both Contrib	utions		

- Precision error between the ground truth and estimated attitude is reported using the <u>Mean Absolute Error</u> on:
 - Quaternion Angle Difference (QAD)
 - Euler Angles (Yaw, Pitch and Roll).

A difference of less than 0.5° is not significant.

Stability (Stab.) is reported using a Moving Standard Deviation with a window of 0.1s.

	QAD (°)	Yaw (°)	Pitch (°)	Roll (°)	Stab. (°)
Classical Filter	31.8	28.9	6.9	7.9	0.71
Martin et al.	34.4	34.1	0.9	1.2	1.18
Sabatini et al.	14.6	14.3	1.7	1.9	0.34
Built-in	29.0	28.9	1.1	1.2	1.04
Contribution	10.1	9.8	1.2	1.5	0.25

	Attitude Estimation ○○○○○○○●○		
Results for Both Contrib	utions		

- Precision error between the ground truth and estimated attitude is reported using the <u>Mean Absolute Error</u> on:
 - Quaternion Angle Difference (QAD)
 - Euler Angles (Yaw, Pitch and Roll).

A difference of less than 0.5° is not significant.

Stability (Stab.) is reported using a Moving Standard Deviation with a window of 0.1s.

	QAD (°)	Yaw (°)	Pitch (°)	Roll (°)	Stab. (°)
Classical Filter	31.8	28.9	6.9	7.9	0.71
Martin et al.	34.4	34.1	0.9	1.2	1.18
Sabatini et al.	14.6	14.3	1.7	1.9	0.34
Built-in	29.0	28.9	1.1	1.2	1.04
Contribution	10.1	9.8	1.2	1.5	0.25

	Attitude Estimation ○○○○○○○●○		
Results for Both Contrib	utions		

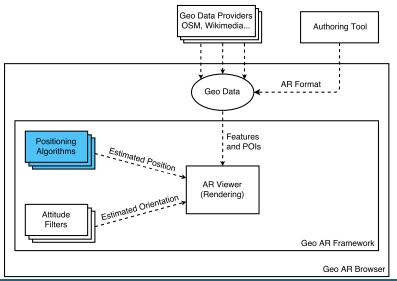
- Precision error between the ground truth and estimated attitude is reported using the <u>Mean Absolute Error</u> on:
 - Quaternion Angle Difference (QAD)
 - Euler Angles (Yaw, Pitch and Roll).

A difference of less than 0.5° is not significant.

Stability (Stab.) is reported using a Moving Standard Deviation with a window of 0.1s.

	QAD (°)	Yaw (°)	Pitch (°)	Roll (°)	Stab. (°)
Classical Filter	31.8	28.9	6.9	7.9	0.71
Martin et al.	34.4	34.1	0.9	1.2	1.18
Sabatini et al.	14.6	14.3	1.7	1.9	0.34
Built-in	29.0	28.9	1.1	1.2	1.04
Contribution	10.1	9.8	1.2	1.5	0.25

	Attitude Estimation		
	000000000		
Availability			


Open source code/data for scientific reproducibility

http://tyrex.inria.fr/mobile/benchmarks-attitude

- ▶ The benchmark source code.
- ► **O** Existing and proposed filter source code.
- ▶ Android and iOS sensor recorder applications.
- Extended results.
- **Online tool:** benchmarks-attitude/#comparison-parameters

	Geolocation		

Geo AR Process Overview

	Geolocation		
	0000000		
Background			

Geolocation on Smartphones

Problems

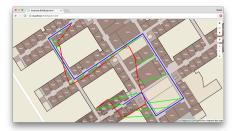
- There is no benchmark with several datasets where some techniques are compared indoor and outdoor.
- Testing setups are often unrealistic (walls are not considered, smartphone is fixed, lots of anchors).

Challenge

Find the best geolocation technique using embedded smartphone sensors.

- Accelerometer
- Magnetometer
- Gyroscope

- Pressure
- Light
- Bluetooth


- WiFi
- Global Navigation Satellite System (GNSS)

		Geolocation		
		0000000		
Contribution 3: Bench	mark and study of positioning est	timation techniques		

Contribution 3: A Smartphone Application with Landmarks to Evaluate Geolocation Techniques

- Measurements: We record all available sensors in the smartphone.
- Reference: User confirms its path at known positions.

- ▶ 30 datasets have been recorded by 5 test subjects.
 - Different persons: every person walked between 3 and 5 minutes.
 - Different motions: smartphone free or fixed towards user direction.
 - Different environments: indoor and outdoor

		Geolocation		
		0000000		
Contribution 3: Benchm	nark and study of positioning est	imation techniques		

Techniques Used and Scoring Formula

6 techniques have been compared.

- GNSS (GPS & GLONASS)
- WiFi Fingerprinting
- WiFi Trilateration

- Step and Heading System (SHS)
- SHS + Map-Matching (point to network with orientation)
- Ultra Wide Band (UWB)

Scoring formula of a dataset for a given technique

precision error =
$$\frac{1}{n} \sum_{t} \underbrace{\|P_{est}(t) - P_{ref}(t)\|}_{t}$$

n is the number of reference points *t* is the timestamp of a reference point

Contribution 3: Benchmark and study of positioning estimation techniques	000	90

Results: Indoor and Outdoor Precision

Hypotheses:

- Smartphone is fixed towards user direction
- Starting position is known

	Indoor		Outdoor	
	AVG	STD	AVG	STD
SHS	8.18 m	4.96 <i>m</i>	16.68 m	14.44 m
SHS + Map-Matching	2.26 m	1.55 <i>m</i>	11.93 m	9.60 m
WiFi-Fingerprinting	8.12 m	8.56 <i>m</i>	×*	х
WiFi-Trilateration	7.72 m	8.32 m	×*	Х
UWB	0.49 <i>m</i>	0.26 <i>m</i>	×*	х
GNSS	25.44 m	14.76 <i>m</i>	3.54 m	2.58 m

* Technologies based on WiFi and UWB have not been deployed outside.

AVG = AverageSTD = STandard Deviation

Contribution 3: Benchmark and study of positioning estimation techniques	000	90

Hypotheses:

- Smartphone is fixed towards user direction
- Starting position is known

	Ind	oor	Out	door
	AVG	STD	AVG	STD
SHS	8.18 m	4.96 <i>m</i>	16.68 m	14.44 m
SHS + Map-Matching	2.26 m	1.55 <i>m</i>	11.93 m	9.60 <i>m</i>
WiFi-Fingerprinting	8.12 m	8.56 <i>m</i>	×*	х
WiFi-Trilateration	7.72 m	8.32 m	×*	х
UWB	0.49 <i>m</i>	0.26 <i>m</i>	×*	х
GNSS	25.44 m	14.76 <i>m</i>	3.54 m	2.58 m

* Technologies based on WiFi and UWB have not been deployed outside.

Contribution 3: Benchmark and study of positioning estimation techniques	000	90

Hypotheses:

- Smartphone is fixed towards user direction
- Starting position is known

	Ind	oor	Out	door
	AVG	STD	AVG	STD
SHS	8.18 m	4.96 <i>m</i>	16.68 m	14.44 m
SHS + Map-Matching	2.26 <i>m</i>	1.55 <i>m</i>	11.93 m	9.60 <i>m</i>
WiFi-Fingerprinting	8.12 m	8.56 <i>m</i>	×*	х
WiFi-Trilateration	7.72 m	8.32 m	×*	х
UWB	0.49 <i>m</i>	0.26 <i>m</i>	×*	х
GNSS	25.44 m	14.76 <i>m</i>	3.54 <i>m</i>	2.58 m

* Technologies based on WiFi and UWB have not been deployed outside.

Contribution 3: Benchmark and study of positioning estimation techniques	000	90

Hypotheses:

- Smartphone is fixed towards user direction
- Starting position is known

	Ind	oor	Out	door
	AVG	STD	AVG	STD
SHS	8.18 m	4.96 <i>m</i>	16.68 m	14.44 m
SHS + Map-Matching	2.26 m	1.55 <i>m</i>	11.93 m	9.60 m
WiFi-Fingerprinting	8.12 <i>m</i>	8.56 <i>m</i>	×*	Х
WiFi-Trilateration	7.72 m	8.32 <i>m</i>	×*	Х
UWB	0.49 <i>m</i>	0.26 <i>m</i>	×*	х
GNSS	25.44 m	14.76 <i>m</i>	3.54 m	2.58 m

* Technologies based on WiFi and UWB have not been deployed outside.

 $\begin{array}{l} \mathsf{AVG} = \mathsf{Average} \\ \mathsf{STD} = \mathsf{STandard} \ \mathsf{Deviation} \end{array}$

Contribution 3: Benchmark and study of positioning estimation techniques	000	90

Hypotheses:

- Smartphone is fixed towards user direction
- Starting position is known

	Ind	oor	Out	door
	AVG	STD	AVG	STD
SHS	8.18 m	4.96 m	16.68 m	14.44 m
SHS + Map-Matching	2.26 m	1.55 <i>m</i>	11.93 m	9.60 m
WiFi-Fingerprinting	8.12 m	8.56 <i>m</i>	×*	Х
WiFi-Trilateration	7.72 m	8.32 m	×*	х
UWB	0.49 <i>m</i>	0.26 <i>m</i>	×*	х
GNSS	25.44 <i>m</i>	14.76 <i>m</i>	3.54 <i>m</i>	2.58 m

* Technologies based on WiFi and UWB have not been deployed outside.

Contribution 3: Benchmark and study of positioning estimation techniques	000	90

Hypotheses:

- Smartphone is fixed towards user direction
- Starting position is known

	Ind	oor	Out	door
	AVG	STD	AVG	STD
SHS	8.18 m	4.96 m	16.68 m	14.44 m
SHS + Map-Matching	2.26 m	1.55 <i>m</i>	11.93 m	9.60 m
WiFi-Fingerprinting	8.12 m	8.56 <i>m</i>	×*	Х
WiFi-Trilateration	7.72 m	8.32 m	×*	Х
UWB	0.49 <i>m</i>	0.26 <i>m</i>	×*	х
GNSS	25.44 m	14.76 m	3.54 <i>m</i>	2.58 <i>m</i>

* Technologies based on WiFi and UWB have not been deployed outside.

Contribution 3: Benchmark and study of positioning estimation techniques	000	90

Hypotheses:

- Smartphone is fixed towards user direction
- Starting position is known

	Ind	oor	Out	door
	AVG	STD	AVG	STD
SHS	8.18 m	4.96 m	16.68 m	14.44 m
SHS + Map-Matching	2.26 m	1.55 <i>m</i>	11.93 m	9.60 m
WiFi-Fingerprinting	8.12 m	8.56 <i>m</i>	×*	Х
WiFi-Trilateration	7.72 m	8.32 m	×*	х
UWB	0.49 <i>m</i>	0.26 <i>m</i>	×*	х
GNSS	25.44 m	14.76 m	3.54 <i>m</i>	2.58 <i>m</i>

* Technologies based on WiFi and UWB have not been deployed outside.

		Geolocation						
		0000000						
Contribution 3: Benchmark and study of positioning estimation techniques								

Hypotheses:

- Smartphone is fixed towards user direction
- Starting position is known

	Without Map-Matching		With Map-Matching	
	AVG STD		AVG	STD
Built-in	55.21 m	68.19 m	49.41 m	70.58 m
Best of existing	8.62 m	4.70 <i>m</i>	2.33 m	1.55 m
Contribution 2	8.18 m	4.96 <i>m</i>	2.26 m	1.55 <i>m</i>

Best of existing filter

		Geolocation						
		0000000						
Contribution 3: Benchmark and study of positioning estimation techniques								

Hypotheses:

- Smartphone is fixed towards user direction
- Starting position is known

	Without Map-Matching		With Map-Matching	
	AVG	STD	AVG	STD
Built-in	55.21 m	68.19 <i>m</i>	49.41 m	70.58 <i>m</i>
Best of existing	8.62 m	4.70 <i>m</i>	2.33 m	1.55 m
Contribution 2	8.18 m	4.96 <i>m</i>	2.26 m	1.55 <i>m</i>

Best of existing filter

Contribution 2

		Geolocation						
		0000000						
Contribution 3: Benchmark and study of positioning estimation techniques								

Hypotheses:

- Smartphone is fixed towards user direction
- Starting position is known

	Without I	Map-Matching	With Map-Matching		
	AVG	STD	AVG	STD	
Built-in	55.21 m	68.19 <i>m</i>	49.41 m	70.58 m	
Best of existing	8.62 m	4.70 <i>m</i>	2.33 m	1.55 m	
Contribution 2	8.18 m	4.96 <i>m</i>	2.26 m	1.55 <i>m</i>	

Best of existing filter

		Geolocation						
		0000000						
Contribution 3: Benchmark and study of positioning estimation techniques								

Hypotheses:

- Smartphone is fixed towards user direction
- Starting position is known

	Without I	Map-Matching	With Map-Matching		
	AVG	STD	AVG	STD	
Built-in	55.21 m	68.19 <i>m</i>	49.41 m	70.58 <i>m</i>	
Best of existing	8.62 m	4.70 <i>m</i>	2.33 m	1.55 m	
Contribution 2	8.18 m	4.96 <i>m</i>	2.26 m	1.55 <i>m</i>	

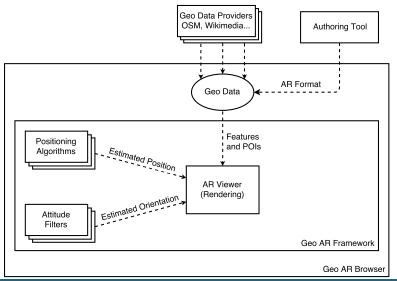
Best of existing filter

		Geolocation						
		0000000						
Contribution 3: Benchmark and study of positioning estimation techniques								

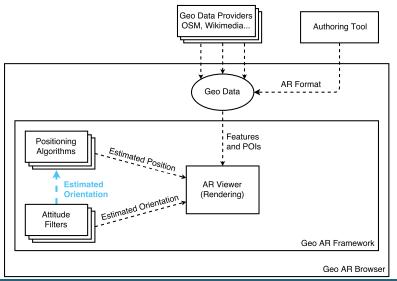
Hypotheses:

- Smartphone is fixed towards user direction
- Starting position is known

	Without I	Map-Matching	With Map-Matching		
	AVG STD		AVG	STD	
Built-in	55.21 m	68.19 <i>m</i>	49.41 m	70.58 m	
Best of existing	8.62 m	4.70 <i>m</i>	2.33 m	1.55 <i>m</i>	
Contribution 2	8.18 m	4.96 <i>m</i>	2.26 m	1.55 <i>m</i>	



Best of existing filter


		Geolocation						
		00000000						
Contribution 3: Ben	Contribution 3: Benchmark and study of positioning estimation techniques							

Geo AR Process Overview

		Geolocation						
		00000000						
Contribution 3: Benchmark and study of positioning estimation techniques								

Geo AR Process Overview

		Geolocation		
		00000000		
Contribution 3: Benc	hmark and study of positioning est	timation techniques		

- Smartphone is fixed towards user direction
- Starting position is known

	Fixed		
	AVG	STD	
SHS	8.18 m	4.96 <i>m</i>	
SHS + Map-Matching	2.26 m	1.55 m	
WiFi-Fingerprinting	8.12 m	8.56 m	
WiFi-Trilateration	7.72 m	8.32 m	
UWB	0.49 <i>m</i>	0.26 <i>m</i>	
GNSS	25.44 m	14.76 <i>m</i>	

		Geolocation		
		00000000		
Contribution 3: Benc	hmark and study of positioning est	timation techniques		

- Smartphone is fixed towards user direction
- Starting position is known

	Fixed		Free	
	AVG	STD	AVG	STD
SHS	8.18 m	4.96 <i>m</i>	17.20 m	12.77 m
SHS + Map-Matching	2.26 m	1.55 m	15.16 <i>m</i>	14.33 m
WiFi-Fingerprinting	8.12 m	8.56 m	9.61 m	11.89 <i>m</i>
WiFi-Trilateration	7.72 m	8.32 m	10.18 <i>m</i>	12.41 m
UWB	0.49 <i>m</i>	0.26 <i>m</i>	0.49 <i>m</i>	0.26 <i>m</i>
GNSS	25.44 m	14.76 <i>m</i>	25.93 m	16.22 <i>m</i>

		Geolocation		
		00000000		
Contribution 3: Benc	hmark and study of positioning est	timation techniques		

- Smartphone is fixed towards user direction
- Starting position is known

	Fixed		Free	
	AVG	STD	AVG	STD
SHS	8.18 m	4.96 <i>m</i>	17.20 m	12.77 m
SHS + Map-Matching	2.26 m	1.55 m	15.16 <i>m</i>	14.33 m
WiFi-Fingerprinting	8.12 m	8.56 m	9.61 m	11.89 <i>m</i>
WiFi-Trilateration	7.72 m	8.32 m	10.18 <i>m</i>	12.41 <i>m</i>
UWB	0.49 <i>m</i>	0.26 <i>m</i>	0.49 <i>m</i>	0.26 <i>m</i>
GNSS	25.44 m	14.76 <i>m</i>	25.93 m	16.22 <i>m</i>

		Geolocation		
		00000000		
Contribution 3: Benc	hmark and study of positioning est	timation techniques		

- Smartphone is fixed towards user direction
- Starting position is known

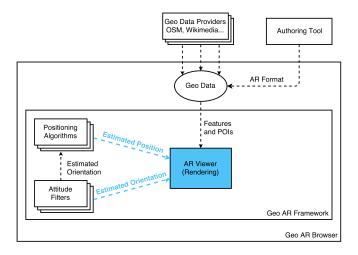
	Fixed		Free	
	AVG	STD	AVG	STD
SHS	8.18 m	4.96 <i>m</i>	17.20 m	12.77 m
SHS + Map-Matching	2.26 m	1.55 m	15.16 <i>m</i>	14.33 m
WiFi-Fingerprinting	8.12 m	8.56 <i>m</i>	9.61 m	11.89 <i>m</i>
WiFi-Trilateration	7.72 m	8.32 m	10.18 <i>m</i>	12.41 m
UWB	0.49 <i>m</i>	0.26 <i>m</i>	0.49 <i>m</i>	0.26 <i>m</i>
GNSS	25.44 m	14.76 <i>m</i>	25.93 m	16.22 <i>m</i>

		Geolocation		
		00000000		
Contribution 3: Benc	hmark and study of positioning est	timation techniques		

- Smartphone is fixed towards user direction
- Starting position is known

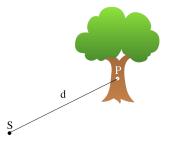
	Fixed		Free	
	AVG	STD	AVG	STD
SHS	8.18 m	4.96 <i>m</i>	17.20 m	12.77 m
SHS + Map-Matching	2.26 m	1.55 m	15.16 <i>m</i>	14.33 m
WiFi-Fingerprinting	8.12 m	8.56 m	9.61 m	11.89 <i>m</i>
WiFi-Trilateration	7.72 m	8.32 m	10.18 <i>m</i>	12.41 m
UWB	0.49 <i>m</i>	0.26 <i>m</i>	0.49 <i>m</i>	0.26 <i>m</i>
GNSS	25.44 m	14.76 <i>m</i>	25.93 m	16.22 <i>m</i>

		Geolocation		
		0000000		
Contribution 3: Benc	hmark and study of positioning es	timation techniques		


Results: Unknown Starting Position

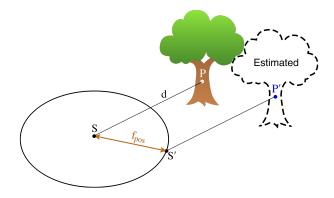
- Smartphone is fixed towards user direction
- Starting position is known

	Unknown Starting Position		
	AVG	STD	
SHS	x	×	
SHS + Map-Matching	x	×	
WiFi-Fingerprinting	8.12 m	8.56 <i>m</i>	
WiFi-Trilateration	7.72 m	8.32 m	
UWB	0.49 <i>m</i>	0.26 <i>m</i>	
GNSS	25.44 m	14.76 <i>m</i>	


		Evaluation •••••	
Background			

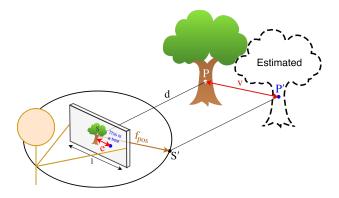
Estimating Geo AR Error

How do attitude and positioning estimation errors impact the rendering?


			Evaluation			
00000	0000000000	00000000	0000		0000	
Contribution 4: A model to quantify with precision the Geo AR rendering errors						

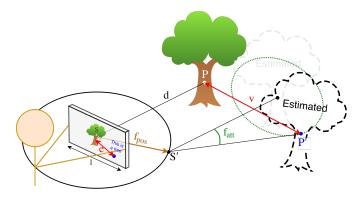
• We consider a feature point (P) at a fixed distance (d) from the smartphone (S).

			Evaluation			
			0000			
Contribution 4: A model to quantify with precision the Geo AR rendering errors						


Estimated position error f_{pos} (Contribution 3)

- We consider a feature point (P) at a fixed distance (d) from the smartphone (S).
- S' and P' are the estimated positions of the smartphone and the feature.

00000	000000000	00000000	0000	00	0000
	odel to quantify with precision the		00000	00	0000


Distance projected on the screen e

- We consider a feature point (P) at a fixed distance (d) from the smartphone (S).
- S' and P' are the estimated positions of the smartphone and the feature.
- v is the distance between the estimated feature (P') and the real position of the feature (P). e is its projection on the screen.

			Evaluation			
			0000			
Contribution 4: A model to quantify with precision the Geo AR rendering errors						

Estimated attitude error f_{att} (Contribution 1)

- We consider a feature point (P) at a fixed distance (d) from the smartphone (S).
- S' and P' are the estimated positions of the smartphone and the feature.
- *v* is the distance between the estimated feature (*P'*) and the real position of the feature (*P*). *e* is its projection on the screen.

			Evaluation			
			00000			
Contribution 4: A model to quantify with precision the Geo AR rendering errors						

- Data used for evaluation came from attitude and positioning benchmarks (Contributions 1 & 3).
- Smartphone's screen width (1) is 11 cm and camera's field of view (fov) is 60°.
- Usability of Geo AR on 4 Use Cases
 - Mountains app (Outdoor)
 A person identifies mountains and cities from a clear space.
 - **2** Touring app (Outdoor)

A tourist reads information about old buildings during a tour.

3 Smart Home app (Indoor)

A user points objects in a room to monitor or interact with them.

4 Augmented models app (Indoor)

A user makes a 3D model appear and turns around to look it from other angles.

			Evaluation			
			00000			
Contribution 4: A model to quantify with precision the Geo AR rendering errors						

- Data used for evaluation came from attitude and positioning benchmarks (Contributions 1 & 3).
- Smartphone's screen width (1) is 11 cm and camera's field of view (fov) is 60°.
- Usability of Geo AR on 4 Use Cases

		Evaluation	
		00000	
Use Cases			

Mountains app

From a high position, a person wants to identify mountains and cities around him. The person is on a hiking trail or in a ski resort and the space around him is clear.

- **Position:** From GNSS outside ($avg \simeq 3.54 m$)
- Attitude: From AR with low magnetic perturbations $(avg \simeq 4.5^{\circ})$.
- **Feature Distance:** From 1 km to 50 km.

	Screen distance (e)		Real to virtual dist. (v)		
Feature at	AVG	STD	AVG	STD	
1 km	0.77 cm	0.02 cm	78.6 m	1.8 <i>m</i>	
10 km	0.77 cm	0.00 cm	785.2 m	1.8 <i>m</i>	
50 km	0.77 cm	0.00 cm	3926 m	1.8 <i>m</i>	

		Evaluation	
		00000	
Use Cases			

Smart Home app

A user points objects in a house to monitor the energy consumption (e.g. radiators, fridge) or to interact with them (e.g. lights, blinds).

- **Position:** From UWB ($avg \simeq 0.49 m$)
- Attitude: From AR with high magnetic perturbations (avg ~ 10.8°).
- Feature Distance: From 0.5 m to 5 m.

	Screen di	stance (<i>e</i>)	Real to virtual dist. (v)		
Feature at	AVG	STD	AVG	STD	
0.5 <i>m</i>	37.76 cm	105.29 cm	0.5 <i>m</i>	0.0 <i>m</i>	
1 <i>m</i>	4.02 cm	2.07 cm	0.5 <i>m</i>	0.1 <i>m</i>	
2 m	2.41 cm	1.13 cm	0.6 <i>m</i>	0.2 <i>m</i>	
5 <i>m</i>	1.96 cm	0.50 cm	1.0 <i>m</i>	0.2 <i>m</i>	

		Applications ●O	

Application 1: Tyr-AR

An AR viewer to name the mountains, cities and historical buildings over the camera feed of the smartphone.

Application 2: AmiAR

► A proof of concept of a Geo AR system in a smart apartment (EquipEx Amiqual4Home).

					Conclusion ●000
Contributions					

- No comparative testing method for orientation filters.
 - **①** Contribution: Benchmark and study of attitude estimation filters
 - **2** Contribution: Filter against magnetic perturbations
- ► No comparative testing method for geolocation algorithms.
 - S Contribution: Benchmark and study of positioning estimation techniques
- No assessment on how orientation/geolocation estimation errors impact AR Rendering.
 - Contribution: An evaluation method to quantify with precision the Geo AR rendering errors

			Conclusion 0●00

Perspectives

- ▶ [Short Term] Enhance the overall precision by:
 - Taking into account more magnetic fields detectors (e.g.: Renaudin et al.) for Contribution 2 enhancement.
 - Fuse localisation techniques for a better position estimation.
- [Short Term] An end-user study to qualify precision errors and stability of a Geo AR system.
 - E.g.: Is a precision error of 3 *cm* on a 11 *cm*-wide smartphone's screen is satisfying for a good user experience?
- [Mid Term] Fine-grained AR experiences by fusing vision-based and geolocation-based approaches.
- ▶ [Long Term] Geo Augmented Reality for UAV.

			Conclusion 00●0
D 1 11			

Publications

A comparative analysis of attitude estimation for pedestrian navigation with smartphones.

Thibaud Michel, Hassen Fourati, Pierre Genevès and Nabil Layaïda. International Conference on Indoor Positioning and Indoor Navigation, Oct 2015, Banff, Canada.

• On attitude estimation with smartphones.

Thibaud Michel, Pierre Genevès, Hassen Fourati and Nabil Layaïda. IEEE International Conference on Pervasive Computing and Communications, Mar 2017, Kona, U.S.

[Submitted] Attitude estimation with smartphones. Thibaud Michel, Pierre Genevès, Hassen Fourati and Nabil Layaïda. (Extended version of the above PerCom paper.)

[In Preparation] An evaluation method to quantify Geo AR rendering errors.

		Conclusion
		0000

Thank you.

How attitude estimation works?

Wahba's problem (1965) seeks to find a rotation matrix between two coordinate systems from a set of vector observations.

Accelerometer and magnetometer of the smartphone can be used for this purpose:

$$\begin{cases} {}^{E} \operatorname{acc} &= M * {}^{S} \operatorname{acc} \\ {}^{E} \operatorname{mag} &= M * {}^{S} \operatorname{mag} \end{cases}$$

where M is the attitude estimated.

Gyroscope is also used to correct data:

$$\dot{M}_k = \dot{M}_{k-1} * \operatorname{gyr}$$

Hypothesis:

Smartphone is not translating

E
acc = $\begin{bmatrix} 0 & 0 & g \end{bmatrix}^{T}$

where g is the gravity

 It is not in presence of magnetic perturbations

E
mag = $\begin{bmatrix} m_{x} & m_{y} & m_{z} \end{bmatrix}^{T}$

where m_x, m_y, m_z can be found using World Magnetic Model.

Typical Smartphone Motions

External accelerations correspond to solid movements and accelerations and are not related to gravity. An accelerometer measures both of them.

Eight typical motions for a smartphone with an average on external accelerations:

AR 0.6 *m.s*⁻²

Texting $1.1 \ m.s^{-2}$

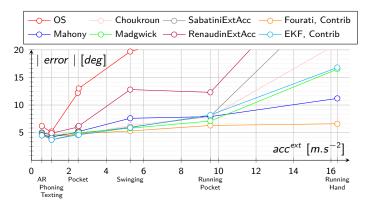
Phoning $1.1 \ m.s^{-2}$

Front Pocket 2.5 $m.s^{-2}$

Back Pocket 2.5 $m.s^{-2}$

Swinging 5.3 $m.s^{-2}$

Running Pocket 9.6 m.s⁻²

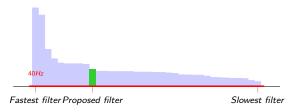


Running Hand 16.3 m.s⁻²

Attitude Estimation		AR Browser
0000		0000000

Behaviors during Typical Smartphone Motions

- It exists a direct correlation between external acceleration magnitude and precision error.
- Filters which take external accelerations into account do not yield better precision than others.


Attitude Estimation		AR Browser
0000		0000000

Relevant Sampling Rates

Precision according to sampling rates.

	100Hz	40Hz	10Hz	2Hz
Proposed filter	5.9°	6.0°	14.8°	52.5°

 Average sampling rate of all algorithms generated by a Nexus 5 in Java/Android.

	Geolocation	AR Browser
	0000	00000000
Motivations		

Geolocation in the smartphone context

Objective

Find the best geolocation technique which can be used by a commodity smartphone

Problem: They are only few benchmarks using smartphones and they :

- 1 do not compare the different techniques on a common dataset
- use unrealistic context (motion lab, smartphone fixed, lots of anchors)
- 3 let the developer be the person who test the system

 Attitude Estimation
 Geolocation
 Scoring
 AR Browser

 0000
 00000
 000000
 0000000

 An Experimental Protocol to Score and Analyze Navigation Algorithms
 00000
 0000000

GTR4SL - Ground Truth Recorder for Sensor Localization

 Record raw and computed data from 25 Android sensors. Attitude Estimation Geolocation 0000 0000 An Experimental Protocol to Score and Analyze Navigation Algorithms

GTR4SL - Ground Truth Recorder for Sensor Localization

- Record raw and computed data from 25 Android sensors.
- Thanks to a map with predefined known positions, user confirms its path. (reference)

Attitude Estimation Geolocation 0000 0000 An Experimental Protocol to Score and Analyze Navigation Algorithms

GTR4SL - Ground Truth Recorder for Sensor Localization

- Record raw and computed data from 25 Android sensors.
- Thanks to a map with predefined known positions, user confirms its path. (reference)
- Each dataset is recorded with metadata on how is hold the smartphone and who did the trial.

Attitude Estimation Geolocation Scoring OOOO OOOO OOOO An Experimental Protocol to Score and Analyze Navigation Alcorithms

GTR4SL - Ground Truth Recorder for Sensor Localization

I N	\$⊕ ⊽ ⊿	B 06:56
← Sensors Logs		
20170713_065458 ③ 13 juil. 2017 6:54:58 AM	🗎 621,90 kB	∞ 0 0
20170711_151903 ③ 11 juil: 2017 3:19:03 PM	🖺 715,44 kB	a‰ o
20170711_151602 ③ 11 juil: 2017 3:16:02 PM	🖺 1,57 MB	alo
20170711_151054 ③ 11 juil: 2017 3:10:54 PM	🖹 1,77 MB	a¢0
20170711_150935_cali	ib_mag ≌ 13,51 kB	ŝ
20170711_150911_cali	ib_mag 13,52 kB	ŝ
20170711_084812 ③ 11 juil. 2017 8:48:12 AM	🖹 859,60 kB	ŝ
20170711_084800_cali	ib_mag 8,28 kB	ŝ

- Record raw and computed data from 25 Android sensors.
- Thanks to a map with predefined known positions, user confirms its path. (reference)
- Each dataset is recorded with metadata on how is hold the smartphone and who did the trial.
- Many datasets can be recorded by several people in several places.

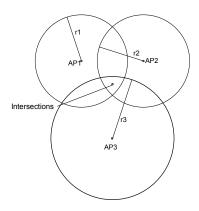
	Geolocation	AR Browser
	00000	0000000
An Experimental Protocol to Score a	and Analyze Navigation Algorithms	

Wifi Fingerprinting

- Wifi Trilateration
- Step and Heading System (SHS)
- SHS + Map-Matching
- ► GNSS

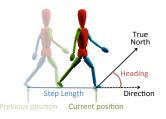
Offline phase

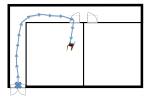
Online phase


► UWB

	Geolocation	AR Browser
	00000	0000000
An Experimental Protocol to Score a	and Analyze Navigation Algorithms	

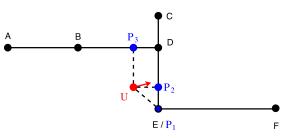
Wifi Fingerprinting


- ► Wifi Trilateration
- Step and Heading System (SHS)
- SHS + Map-Matching
- ► GNSS


► UWB

	Geolocation	AR Browser
	00000	0000000
An Experimental Protocol to Score a	nd Analyze Navigation Algorithms	

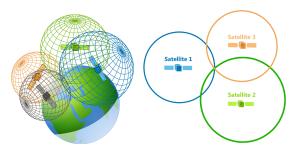
- Wifi Fingerprinting
- Wifi Trilateration
- Step and Heading System (SHS)
- SHS + Map-Matching
- ► GNSS
- ► UWB



	Geolocation	AR Browser
	00000	0000000
An Experimental Protocol to Score a	and Analyze Navigation Algorithms	

- Wifi Fingerprinting
- Wifi Trilateration
- Step and Heading System (SHS)
- SHS + Map-Matching
- ► GNSS

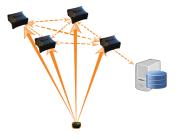
► UWB



Point to network approach

	Geolocation	AR Browser
	00000	0000000
An Experimental Protocol to Score a	nd Analyze Navigation Algorithms	

- Wifi Fingerprinting
- Wifi Trilateration
- Step and Heading System (SHS)
- SHS + Map-Matching
- ► GNSS


► UWB

	Geolocation	AR Browser
	00000	00000000
An Experimental Protocol to Score and Analyze Na	vigation Algorithms	

- Wifi Fingerprinting
- Wifi Trilateration
- Step and Heading System (SHS)
- SHS + Map-Matching
- GNSS
- UWB

Signal from a tag is received by several anchors antennas, then position is computed by a server.

Ultra Wideband (UWB)

 Attitude Estimation
 Geolocation
 Scoring
 AR Browser

 0000
 00000
 000000
 0000000

 An Experimental Protocol to Score and Analyze Navigation Algorithms
 000000
 0000000

The Context of our Testbed

- ► Trials have been conducted in a 15 000 m^2 -building and a 5 000 m^2 -clear space area.
- ▶ 30 datasets have been recorded by 5 test subjects.
 - Every person walked between 3 and 5 minutes.
 - Two modes: smartphone is fixed towards user direction or it is free.
- Each technology is evaluated with the same input data.

 Attitude Estimation
 Geolocation
 Scoring
 AR Browser

 0000
 00000
 000000
 0000000
 0000000

 An Experimental Protocol to Score and Analyze Navigation Algorithms

Scoring and Analyze on a Vector Map

Scoring formula of a dataset for a given technique

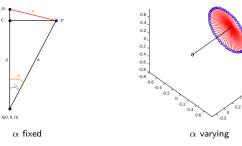
error =
$$\frac{1}{n} \sum_{t}^{n} \underbrace{\|P_{est}(t) - P_{ref}(t)\|}_{euclidean distance}$$

n is the number of reference points *t* is the timestamp of a reference point

Example of a dataset with PDR algorithm.

	Scoring ●00000	AR Browser 00000000
Evaluation Method		

Attitude Estimation Method

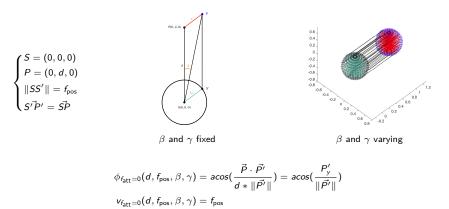

Assumption

The estimated position is perfect.

P(0, d, 0)

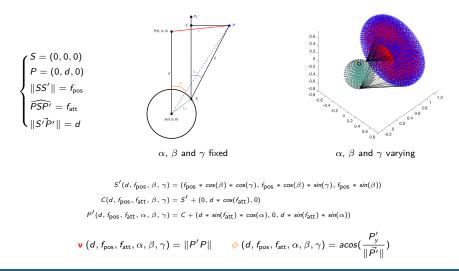
C

$$\begin{split} \phi_{f_{\mathsf{pos}}=0}(d,\,f_{\mathsf{att}}) &= f_{\mathsf{att}} \\ v_{f_{\mathsf{pos}}=0}(d,\,f_{\mathsf{att}},\,\alpha) &= \sqrt{2*d^2(1-\cos(f_{\mathsf{att}}))} \end{split}$$

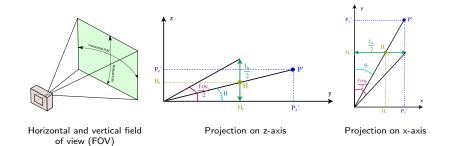

< 0.8 ×0.6 < 0.4

	Scoring O●OOOO	AR Browser 00000000
Evaluation Method		

Position Estimation Method


Assumption

The estimated attitude is perfect.


	Scoring 000000	AR Browser 00000000
Evaluation Method		00000000

Attitude and Position Estimation Model

	Scoring ○○○●○○	AR Browser 00000000
Evaluation Method		

Projected Distance on the Screen

Distance error on screen

$$e(P', fov, l) = ||H|| = \frac{\sqrt{P_x'^2 + P_z'^2}}{P_y'} * \frac{l}{2 * tan(\frac{fov}{2})}$$

	Scoring	AR Browser
	00000	0000000
Scores From our Benchmarks		

Setup of a Scoring System from our Benchmarks

Model Adjustment

- Theoretically, f_{att} is not equal to the attitude error, because QAD also represents the rotation of the feature around $S\vec{P}'$ -axis.
- Our benchmark does not allow us to know positioning error vertically. Therefore, $e_{2D}(d, f_{pos}, f_{att}, \alpha, \gamma, fov, l) = e(d, f_{pos}, f_{att}, \alpha, 0, \gamma, fov, l)$.

 α and γ are not known, so we consider $\textit{E}_{\rm 2D},$ the average value of $\textit{e}_{\rm 2D}:$

$$E_{\rm 2D}(d, f_{\rm pos}, f_{\rm att}, fov, l) = \frac{\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} e_{\rm 2D}(d, f_{\rm pos}, f_{\rm att}, \alpha, \gamma, fov, l) \ d\alpha \ d\gamma}{\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} 1 \ d\alpha \ d\gamma}$$

Average (μ) of *E* from a vector of position errors (F_{pos}) and a vector of attitude errors (F_{att}) are defined by:

$$\mu_{E}(d, F_{\text{pos}}, F_{\text{att}}, \text{fov}, l) = \frac{\sum_{f_{\text{pos}} \in F_{\text{pos}}} \left(\sum_{f_{\text{att}} \in F_{\text{att}}} \left(E_{\text{2D}}(d, f_{\text{pos}}, f_{\text{att}}, \text{fov}, l)\right)\right)}{\sum_{F_{\text{pos}}} \sum_{F_{\text{att}}}}$$

	Scoring ○○○○○●	AR Browser 00000000
Scores From our Benchmarks		

Use Case 1

From a high position, a person wants to identify mountains and cities around him. The person is on a hiking trail or in a ski resort and the space around him is clear.

- **Position:** From GNSS outside ($avg \simeq 3.54 m$)
- Attitude: From AR with a low magnetic perturbations $(avg \simeq 4.5^{\circ})$.
- **Feature Distance:** From 1 km to 50 km.

	Screen distance (e)		Real to virtual dist. (v)	
Feature at	AVG	STD	AVG	STD
1 km	0.77 cm	0.02 cm	78.6 m	1.8 <i>m</i>
10 km	0.77 cm	0.00 cm	785.2 m	1.8 <i>m</i>
50 km	0.77 cm	0.00 cm	3926 m	1.8 <i>m</i>

	Scoring ○○○○○	AR Browser 00000000
Scores From our Benchmarks		

Use Case 2

A person is touring a city. He wants to learn more about the history of this city. He uses his smartphone to read stories by pointing it to old buildings.

- **Position:** From GNSS in downtown ($avg \simeq 15 m$)
- Attitude: From AR with a low magnetic perturbations $(avg \simeq 4.5^{\circ})$.
- Feature Distance: From 5 *m* to 100 *m*.

	Screen distance (e)		Real to virtual dist. (v)	
Feature at	AVG	STD	AVG	STD
5 <i>m</i>	$+\infty^*$	$+\infty^*$	15.0 <i>m</i>	0.2 <i>m</i>
20 m	6.29 cm	3.62 cm	15.1 m	0.8 <i>m</i>
30 m	3.59 cm	1.81 cm	15.1 m	1.2 <i>m</i>
100 m	1.20 cm	0.56 cm	16.5 m	3.7 m

* e is not provided when $f_{pos} > d$ because P' is not projected on the screen, sometimes it is behind the

On Mobile Augmented Reality Applications based on Geolocation

T. MICHEL

	Scoring ○○○○○●	AR Browser 00000000
Scores From our Benchmarks		

Use Case 3

In a building, a user makes a 3D model appear (e.g.: a cat). Then, he turns around to look the 3D model from other angles.

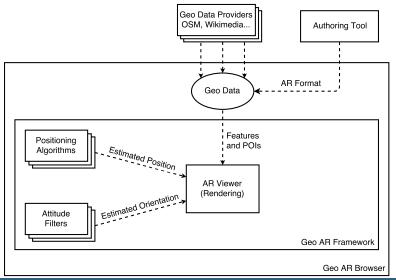
- **Position:** From SHS + Map-Matching ($avg \simeq 2.26 m$)
- Attitude: From AR with a high magnetic perturbations (avg ~ 10.8°).
- Feature Distance: From 0.5 *m* to 2 *m*.

	Screen distance (e)		Real to virt	ual dist. (v)
Feature at	AVG	STD	AVG	STD
0.5 <i>m</i>	$+\infty^*$	$+\infty^*$	2.3 m	0.0 <i>m</i>
1 <i>m</i>	$+\infty^*$	$+\infty^*$	2.3 m	0.1 <i>m</i>
2 <i>m</i>	$+\infty^*$	$+\infty^*$	2.3 m	0.2 <i>m</i>

* e is not provided when $f_{pos} > d$ because P' is not projected on the screen, sometimes it is behind the user.

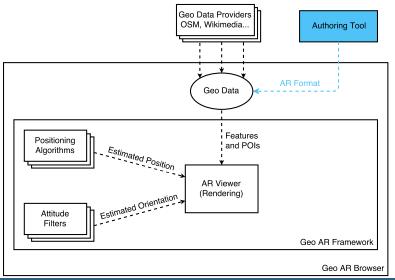
	Scoring ○○○○○●	AR Browser 00000000
Scores From our Benchmarks		

Use Case 4


A user points objects in a house to monitor the energy consumption (e.g. radiators, fridge) or to interact with them (e.g. lights, blinds).

- **Position:** From UWB ($avg \simeq 0.49 m$)
- Attitude: From AR with a high magnetic perturbations (avg ~ 10.8°).
- Feature Distance: From 0.5 m to 5 m.

	Screen distance (e)		Real to virt	ual dist. (v)
Feature at	AVG	STD	AVG	STD
0.5 <i>m</i>	37.76 cm	105.29 cm	0.5 <i>m</i>	0.0 <i>m</i>
1 <i>m</i>	4.02 cm	2.07 cm	0.5 <i>m</i>	0.1 <i>m</i>
2 <i>m</i>	2.41 cm	1.13 cm	0.6 <i>m</i>	0.2 <i>m</i>
5 <i>m</i>	1.96 cm	0.50 cm	1.0 <i>m</i>	0.2 <i>m</i>


		AR Browser
00000	000000	0000000

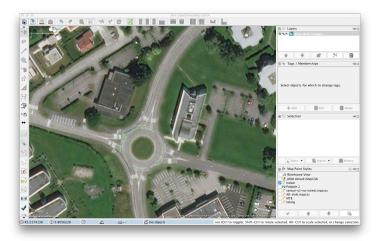
Geo Augmented Reality Overview

	AR Browser
	0000000

Geo Augmented Reality Overview

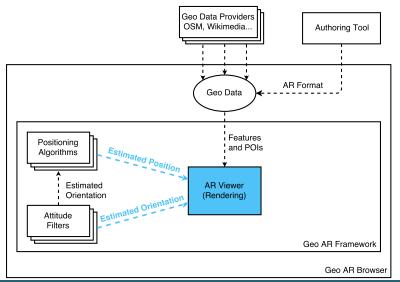
		AR Browser
		0000000
OSM for AR Documents		

An OSM format for AR documents


Objective

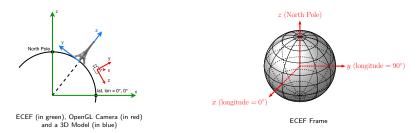
The idea is to reuse OSM XML specifications to propose our own format and take advantage of the power and the multitude of tools from the OSM community.

- < feature, yes > (mandatory) This tag defines if an OSM element is a feature or not.
- < name, [name] > This is the primary tag used for naming an element. Tag was already provided by OSM specifications but not exclusively for features.
- < *image*, [*file-path*] > An image (e.g: old_tower.png).
- < audio, [file-path] > An audio soundtrack (e.g: music.mp3).
- < 3dmodel, [file-path] > A 3D model (e.g: teapot.3ds).
- < 3dmodel-heading, [heading] > Horizontal orientation in degrees from north of the 3D model.
- < geofence, [geofence-type] > Triggering area type. Can be: circle, polyline, polygon.
- < geofence-radius, [radius] > If the geofence is circle or polyline, [radius] corresponds to the radius in meters in which the geofence will be triggered around the element.


		AR Browser
		0000000
OSM for AR Documents		

JOSM: A Fast Authoring Tool for Geo AR

		AR Browser
		00000000
Geo AR Viewer: From Reality to Virtual World		


Geo Augmented Reality Overview

		AR Browser
		00000000
Geo AR Viewer: From Reality to Virtual V	Vorld	

Positioning Features in the OpenGL Scene

- OpenGL is used to represent virtual features like the reality (1 OpenGL unit distance = 1 meter)
- ▶ Features and camera are placed using Earth-Centered, Earth-Fixed frame

The formula to convert geodetic coordinates (latitude (ϕ), longitude (λ), and height (h)) to ECEF:

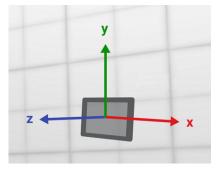
$$\left\{ \begin{array}{l} x = (N(\phi) + h) * \cos(\phi) * \cos(\lambda) \\ y = (N(\phi) + h) * \cos(\phi) * \sin(\lambda) \\ z = \left(\frac{R_{\text{minor}}^2}{R_{\text{major}}^2} * N(\phi) + h\right) * \sin(\phi) \end{array} \right. \quad \text{where, } N(\phi) = \frac{R_{\text{major}}^2}{\sqrt{R_{\text{major}}^2 * \cos^2(\phi) + R_{\text{minor}}^2 * \sin^2(\phi)}} \,.$$

		AR Browser
		00000000
Geo AR Viewer: From Reality to Virtual World		

Fixed and Informational Features

- Fixed Features which have a fixed size and orientation in the virtual world.
- **Informational** Features which have always the same size on screen and they are facing the camera.

Fixed feature



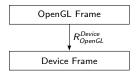
Informational feature

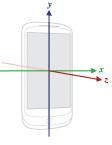
			AR Browser
0000	00000	000000	00000000
Geo AR Viewer: From Reality to Virtual World			

A succession of rotations from OpenGL frame to ECEF frame.

OpenGL Frame

OpenGL Frame

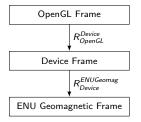

		AR Browser
Geo AR Viewer: From Reality to Virtual World		


Rotation

$$\mathsf{R}^{\text{Device}}_{\text{OpenGL}} = \mathsf{R}_{\mathsf{z}}(-\alpha),$$

where α is the screen orientation (portrait 0°, landscape 90°, reverse portrait 180°, reverse landscape 270°).

A succession of rotations from OpenGL frame to ECEF frame.

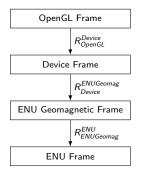


Device Frame

		AR Browser ○○○○○○●○
Geo AR Viewer: From Reality to Virtual World		

A succession of rotations from OpenGL frame to ECEF frame.

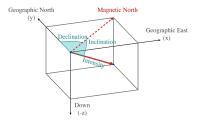
Rotation


$$R_{Device}^{ENUGeomag} = R_{attitude},$$

Device frame relative to Earth's geomagnetic frame

		AR Browser
		00000000
Geo AR Viewer: From Reality to Virtual World		

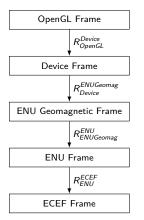
A succession of rotations from OpenGL frame to ECEF frame.



Rotation

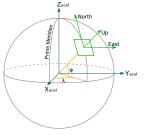
$$R_{ENUGeomag}^{ENU} = R_z(dec),$$

where dec is declination angle defined by WMM.


F

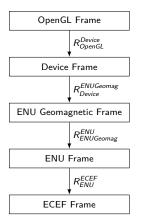
ENU frame relative to Earth's geomagnetic frame

		AR Browser
		00000000
Geo AR Viewer: From Reality to Virtual World		


A succession of rotations from OpenGL frame to ECEF frame.

Rotation

$$R_{ENU}^{ECEF} = R_z(-rac{\pi}{2}+\lambda) R_x(-rac{\pi}{2}-\phi),$$

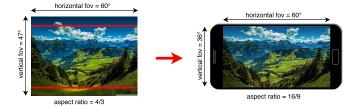

where ϕ is the latitude and λ the longitude

ECEF frame relative to ENU frame

			AR Browser
0000	00000	000000	00000000
Geo AR Viewer: From Reality to Virtual World			

A succession of rotations from OpenGL frame to ECEF frame.

Full Rotation


$$\begin{split} R_{OpenGL}^{ECEF} &= R_{OpenGL}^{Device} R_{Device}^{ENUGeomag} R_{ENUGeomag}^{ECUF} R_{ENU}^{BCCF} \\ &= R_z(-\alpha) \; R_{attitude} \; R_z(dec) \; R_z(-\frac{\pi}{2} + \lambda) \\ &\qquad R_x(-\frac{\pi}{2} - \phi) \end{split}$$

where,

- $\alpha~$ is the screen orientation
- dec is declination angle defined by WMM
 - ϕ is the latitude
 - $\lambda~$ is the longitude

		AR Browser
Geo AR Viewer: From Reality to Virtual World		

Camera stream: Field Of View and Aspect Ratio

Camera feed scaled to fill the size of the view and keep aspect ratio.

Virtual spheres placed at a predefined position on a custom target to verify FOV.