
�����������	
��������
������
	���������������

���������������	��
�����
	����

�����������	
��
��
	��
������

���������������������	
��������

��
���������	���������� !�
�����"���#������

$%$$&�'	������(��
�)���*�

+
	���,�

-��.�/$$�012&�3���4��$�%5�

+	*.�/$$�012&�3���4��5�13�

������,����	
�6��
�	���,7
�

�	#����	8	9�	�
��
	��
������

���������������������	
���������

��
���������	���������� !�
�����"���#������

$%$$&�'	������(��
�)���*�

+
	���,�

-��.�/$$�012&�3���4��$�%&�

+	*.�/$$�012&�3���4��5�13�

�	#��,�	8	��	6��
�	���,7
�

�

ABSTRACT
In this paper, we present an incremental transformation framework
called incXSLT. This framework has been experimented for the
XSLT language defined at the World Wide Web Consortium. For
the currently available tools, designing the XML content and the
transformation sheets is an inefficient, a tedious and an error prone
experience. Incremental transformation processors such as
incXSLT represent a better alternative to help in the design of both
the content and the transformation sheets. We believe that such
frameworks are a first step toward fully interactive transformation-
based authoring environments.

Categories and Subject Descriptors
D.3.4 [Programming languages]: Processors – Interpreters,
Optimization.
D.2.6 [Software engineering]: Programming Environments -
Interactive environments.

General Terms
Algorithms, Performance, Design, Experimentation, Languages,
Theory.

Keywords
XML, XSLT, Incremental transformations, Authoring tools.

1. INTRODUCTION
The advent of the XML standard at the World Wide Web
Consortium has triggered the definition of an incredible amount of
vocabularies in different areas of content representations.
Although these vocabularies are defined separately and designed
for a variety of purposes such as content structure descriptions,
layout languages, vector graphics or mathematical formulas
rendering, they can also be inter-mixed in a single and same
document. These vocabularies share the same encoding language
at the syntactic level thanks to XML and are combined using
another XML companion standard called XML Namespaces [12].
In most cases however, the content is encoded using third party
DTD’s while the resulting documents are encoded using rendering
vocabularies such as XSL [7]. The result is an increasing diversity

of document classes and vocabularies and a lack of authoring tools
that copes with this diversity.

In this paper, we propose an incremental transformation
framework, called incXSLT, which can be used, in particular, in
the editing of XML documents through one or many of its
rendered presentations. These presentations are described as XML
markup and produced usually through a transformation process. In
order to facilitate this operation in an interactive authoring system,
we propose to extend transformation processors to be the basis of
XML documents manipulation. Authoring is one particular use of
such a framework and other applications can be the tuning of
XSLT transformations, the fast updated of large web sites or the
design of XML Schemas. This paper focuses on how to achieve
incremental updates to the presentation after a source XML
document modification occurs.

The paper is organized as follows: in the following section, we
motivate the need of incremental transformations and we discuss
about related works. In the fourth section, we describe the general
architecture of transformation based authoring systems. Then, we
identify the main characteristics of the XSLT transformation
language and we compare it with other available languages. In the
fifth section, we describe our incremental transformation
processor incXSLT that is the central part of the proposed
framework. This description is completed with an evaluation of
the current implementation. In the last section, we give some
conclusions and draw some perspectives related to editing
transformation sheets.

2. GOALS
In the currently available authoring systems [2][19], the only way
to edit XML documents is through a lower-level text
representation or at most through an enhanced representation as a
graphical tree. Some authoring tools [18] give the user the ability
to attach style to XML elements. This association simplifies the
authoring of a document by making the XML content more
accessible to the user through the graphical interface. Even
though, style sheets remain of a very limited help when
considering more complex presentations. More recently, the
<xsl>Composer [22] allows the authoring of XSLT
transformations by direct manipulation. However, this tool has
many lacks: in particular the transformation process is executed
from scratch after each modification of the transformation sheet.
The result is an increasing processing cost proportional to the size
of the document.

Copyright is held by the author/owner(s).
WWW 2002, May 7-11, 2002, Honolulu, Hawaii, USA.
ACM 1-58113-449-5/02/0005.

474

A presentation of an XML document is generally obtained using
the production process described in Figure 1. An XML document,
which can be composed of many vocabularies, is transformed to a
vocabulary closer to its final presentation. The obtained document
is then formatted and graphically rendered to the reader.

In general, one cannot make strong assumptions about the
documents that are to be edited by the user, nor what the user is
trying to achieve with the XML content. For example, the author
may be willing to design a transformation sheet that allows the
production of the layout for a particular class of documents. Due
to the diversity of the source document classes, it’s necessary to
help the author creating transformation rules that handles the
rendering of the different XML elements.

In the case of applications related to the content creation at the
source XML level, the incremental transformation framework can
help in achieving several functions. A first use can be the design
of a function that provides a graphical preview of the document
layout. These documents can be created from scratch or, in a more
productive manner, updated incrementally after a modification in a
source representation of the document occurs. Another application
can be the deployment of XML content toward devices with
different capabilities and users with different preferences. In this
case, the transformation processor can be used to provide
navigation through the various presentations corresponding to the
different devices and users. The navigation can be achieved
simply by selecting the target device and user profiles [5]. At the
transformation level, this is equivalent to a change in the
transformation rules and parameters sets.

As we have seen, the transformation framework can make the
authoring much more efficient and reliable: the author can check
the content design directly on the final presentations. But still,
editing directly the source document remains an inefficient, a
difficult and an error prone task. We believe that an additional step
toward a much more comfortable edition of XML documents is to
get closer to an interactive approach and to provide high level
editing functions related to the document domain.

One of the most important key aspects for the success of such
frameworks is related to performance. In order to be usable, the
transformation process must be fast enough for the user
operations. In particular, it is critical that modifications of the
source document or the transformation sheets are reflected
promptly to the user. In these situations, making transformation
programs incremental becomes a major issue. Incremental
changes allow controlling the scope of the document changes

without requiring a global re-evaluation of the entire
transformation. Controlled incremental updates are capable of
efficiently updating the result of a computation when the source
document or the transformation rules changes slightly. Therefore,
incremental change handling becomes a valuable help for a user
designing XML content or adjusting the transformation sheets.

In this paper, we focus on the target document updates occurring
as a result of changes in the source document. This paper does not
cover reverse transformations required when the changes are
applied in the target document and are to be reflected in the source
document. Examples of application that achieves such bi-
directional changes can be found here [15][18]. Compared to our
framework, most of these applications maintain these changes by
restricting the source and the target documents to have an almost
identical structure. Of course, this assumption is not relevant for
XSLT-like transformations where there are no constraints on the
transformations.

3. RELATED WORKS
In the field of programming languages, a significant amount of
work has been achieved on incremental computations [16]. In
most cases, they either handle specific problems for particular
input changes in the programs, or at the other end propose too
general frameworks. Even though, some specific techniques and
frameworks have helped in the design choices we have made for
incXSLT. For example, selective re-computation used also in [17]
helped in the identification of the rule fragments responsible for
the modifications between source and target elements. The second
technique is based on performance optimization based on
intermediate result caching [10]. In our case, we reused this notion
of local caches to allow execution state restorations for
transformation statements. However, one of the problems we
encountered with caches is the determination of the caches size. In
the particular area of incremental processing of XSLT
transformations, there is no experience on this subject reported in
our knowledge.

4. DESCRIPTION OF XSLT
4.1 Why XSLT?
In the literature, several transformation languages have been
proposed for a variety of purposes. Balise [4] for example, is a
script language in which some functions of tree manipulation
(creation and copy) are provided. Omnimark [11] is another
language more suitable for text streams programming. An
Omnimark program consists of rules that define events such as
general markup events produced when parsing an XML
document. XSLT [11] is a functional language especially designed
for XML document transformation. An XSLT program or
transformation sheet consists of transformation rules (templates)
associated with patterns. When a rule pattern matches the source
document being processed, the corresponding rule is instantiated
and creates as a result a tree fragment.

The transformation power of these three languages is, in fact, quite
similar. XSLT has been designed as a side effects free language. A
function in a programming language is said to have side effects if
it makes changes to its environment, for instance, if it modifies a
global variable that another function can read. Functions that have
no side effects can be called any number of times and in any order.
This property is crucial for the implementation of an efficient
incremental transformation engine. As we will see later, restoring
as fast as possible the execution state (processor context for
XSLT) for a given statement (or instruction) is a key point for

Figure 1. Presentation process

475

efficient incremental transformations. Computing this state for a
language with side effects is more expensive in time and space
than a side effect free language [11][1].

In order to present our incremental transformation processor, the
following section describes the concepts related to XSLT in the
context of incremental processing.

4.2 Main concepts
As described earlier, XSLT is a language specifically designed for
transforming the structure of an XML document. The
transformation processor (see Figure 2) takes as input an XML
document and transforms it by finding first a transformation rule
matching the root node. In a second step, it executes sequentially
the instructions contained in the rule. The result is called the target
document.

Figure 2. Transformation process

4.2.1 An example
Before getting into the details of the incXSLT processor, we give
first a working example that we will use throughout the remaining
part of this paper. Consider the following source fragment
document:

<?xml version=“1.0” encoding=“ISO-8859-1”?>
<article>
 <title>Incremental transformation</title>
 <artheader>
 <authorgroup>
 <author>
 <firstname>Lionel</firstname>
 <lastname>Villard</lastname>
 </author>
 <author>
 <firstname>Nabil</firstname>
 <lastname>Layaïda</lastname>
 </author>
 </authorgroup>
 <date>28 October 2000</date>
 </artheader>
 <section>
 <title>Introduction</title>
 <para>…</para>
 </section>
 <section>

 <title> Toward a WYSIWYG edition of XML
Documents</title>
 <para>…</para>
 <section>
 <title>An example</title>
 <para>…</para>
 </section>
 <section>
 <title>Process overview</title>
 </section>
 </section>
</article>

This XML document is an instance of the docbook [13] document
class. It represents an article composed of global data, gathered
under the artheader element, such as the author names. The
content of article is organized in sections. A possible presentation
on the screen is illustrated in Figure 3. It is followed by the
corresponding source code of the target representation as HTML.
Figure 3 shows the table of content of the article below the first
author’s name and the article’s title. At the bottom of the screen,
the complete list of authors is rendered, followed by the number of
higher-level sections and the document last modification date.

<html>
 <body>
 <p align=“center”>Lionel Villard presents</p>
 <h1 align=“center”>Incremental transformation</h1>
 <h2 align=“left” style=“padding-left=0px”>1.
Introduction</h2>
 <h2 align=“left” style=“padding-left=0px”>2.Toward a
WYSIWYG edition of XML Documents</h2>

 <hr>
 <table width=“100%” border=“1”>
 <tr>

Figure 3. A presentation of a docbook document

476

 <td>Lionel Villard and Nabil Layaïda</td>
 <td>Nb uppest sections : 2</td>
 <td>Last modification : 28 October 2000</td>
 </tr>
 </table>
 </body>
</html>

The presentation above is the result of the transformation applied
by the transformation sheet given in annex A. A fragment of the
execution tree of this transformation is given in Figure 4. At the
beginning of the transformation, the following template rule is
instantiated on the document root element:

8. <xsl:template match=“article”>
9. <html>
10. <body>
… <!-- header generation : “Lionel Villard

 presents” -->
17. <h1 align=“center”><xsl:value-of

 select=“title”/></h1>
18. <xsl:apply-templates select=“section”> …

</xsl:apply-templates>
… …
22. <table border=“1” width=“100%”>
… …
28. </table>
29. </body>
30. </html>
31. </xsl:template>

In the beginning of the transformation, html and body elements
are copied in the target, followed by the header. The title is
presented inside an h1 tag. Then, the table of content is generated
thanks to the instruction line 18. This instruction selects sections
to be processed (see below). The html table containing the full list
of author names, the number of higher-level sections and the date
of the last modification are then generated.

When processing a section, a template that best matches the
section node type is searched in the transformation sheet. In our
case, the following template is instantiated with a parameter that
will be used to indent the section entries. The current source node
is the section node being instantiated. This node will be used to
evaluate expressions. For example, the expression title line 53
retrieves the title of the section being instantiated.

33. <xsl:template match=“section”>
34. <xsl:param name=“indent”>0</xsl:param>
35.
36. <xsl:variable name=“heading”>
… <!-- Depending on the section depth, choose a

 heading tag -->
43. </xsl:variable>
44.
45. <xsl:element name=“{$heading}”>
46. <xsl:attribute name=“style”>padding-left=
47. <xsl:value-of

 select=“$indent”/>px</xsl:attribute>
… …
51. <xsl:number value=“position()” format=“1.”/>
… …

53. <xsl:value-of select=“title”/>
54. </xsl:element>
55.
56. <xsl:if test=“count(ancestor::section) <

 $toc.depth - 1”>
57. <xsl:apply-templates select=“section”>
… …
61. </xsl:if>
62. </xsl:template>

A variable named heading is firstly created (line 36). Its value
contains the name of the heading tag that depends on the section
depth (h2 for level 0, h3 for level 1, etc.). Then an element with
the name contained in the heading variable is generated (line 45).
An attribute named style is added to this element. Its value defines
a left padding of indent pixels. The content of the element
previously generated corresponds to the position of the section
relative to its parent (line 51). It is followed by the title content of
the section (line 53). Then, depending on the section depth (line
56), children sections are processed.

Now that we have presented the principle of this transformation
sheet, we illustrate the transformation through a simple authoring
scenario. For example, think of an author that modifies the source
document by inserting a new section element to article element in
the previous example. In this case, the consequences on the target
document are the following: an h2 element must be generated
with the corresponding number, and depending on where the
section is inserted, the following section numbering must be
updated. The counter of higher-level sections must also be updated
in the html table. In summary, the list of instructions that need to
be re-executed is the following:

• The apply-templates instruction that select section elements
(line 18): the whole template that matches section elements
must be applied with the new inserted section as the source
node.

• The number instruction for all sections following the newly
inserted section element (line 51).

• The second cell of the html table (line 25).
In the remaining part of this paper, we will explain how to
determine the list of previous instructions, and how to update the
target document.

4.2.2 Overview of the incremental processing
One of the goals of an incremental processor is to change only
target document fragments that need to be updated. At the
transformation sheets level, this is equivalent to selecting
instructions that need to be re-executed. Source nodes for which
this re-execution applies must also be identified. The method to
perform selective transformation relies mainly on XPath [23]
expression structure analysis. This analysis must be carried out as
a pre-processing stage of the incremental session. Then, for each
of theses instructions, their execution state must be restored first in
order to be able to execute them. As the state must be restored as
fast as possible, caching techniques are used in incXSLT. As stated
previously, one of the problems we have been facing is the
determination of the minimum data that needs to be saved. The
instruction is executed using the incremental version that we have
developed instead of their non-incremental counterpart available
in the XSLT batch processors.

477

4.2.3 Expressions and patterns
In XSLT, a number of instructions use expressions in attribute
values. An expression is generally composed of one or many path
expressions. A Path expression defines a navigation path through
the navigation tree. When the path expression is evaluated, the
result is a set of source nodes. For example, the expression
artheader/authorgroup (line 24) is a path expression. The
evaluation of this expression is a set of authorgroup elements
with artheader element as a parent.

The evaluation of such expressions depends on a static context and
a dynamic context [9]. For incremental transformations, only the
dynamic context need to be restored each time an instruction is
executed. This context depends on the state of the processor at the
time the expression has been evaluated. This context consists of:

• The current values of all variables that are in the scope of the
expression.

• The current node: this is the node in the source document that
is currently being processed.

• The current node list: when an apply-templates or for-each
instruction are used to process a list of nodes, that list
becomes the current node list.

• The current position indicates the position of the current node
in the current node list.

The expression syntax is also used to specify patterns. A pattern is
a particular expression with some restrictions:

• The result type of the pattern evaluation must be a node set.

• Only child and attribute axes are permitted.
During an incremental session, the instructions that need to be re-
evaluated are those whose associated expression(s) can potentially
change. In particular, this occurs when an attribute is modified in
the source document. In the general case, the result of an
expression can change either because its evaluation context and/or
the result of expression’s location paths has changed. For example,
the instruction <xsl:value-of select=“position()”> needs to be re-
evaluated when the position of the current node changes. In this
case, the position of current node changes only when a section is
added or removed before the current node.

As said earlier, a path expression selects a node-set. In most cases,
the nodes types included in this node-set can be determined
without the knowledge of the dynamic context. For example, the
result of the expression article/section depends only on the
article and section elements. By taking advantage of such a
property, we use it to make a first filter to remove unnecessary
instructions that does not need to be re-evaluated.

In fact, the nodes in the selected node set match a particular
pattern. This pattern is obtained from the path expression. For this
pattern, it is necessary to remove all dynamic context references.
This operation can be quite complex. For example, the reference
of the toc.depth top-level parameter in the expression line 56
(count(ancestor::section) < $toc.depth - 1) must be de-
referenced in order to analyze the parameter value. As the
toc.depth parameter does not contain any location paths and any
dynamic context references, this expression matches only the
pattern section. More complex cases can occur, especially when
the expressions contain references to template’s parameter.

Compare to the XSLT definition of patterns, some restrictions
were lifted in order to remain closer to the definition of this node
set during the conversion. All the possible axes were permitted

except ancestor, ancestor-self, following and preceding. The
restriction of axes in XSLT has been introduced for performance
reasons and the goal was to allow efficient pattern matching. But
in our case, pattern matching occurs relatively less frequently than
during a batch transformation. Secondly, having a more accurate
selection in an incremental transformation allows minimizing the
instructions that need to be re-evaluated. However, as the selection
must remain reasonably efficient, ancestor, ancestor-self,
following and preceding axes are still not permitted because of
their poor performances. For example, testing a node against the
pattern slide/ancestor::title requires a navigation through all the
descendants of the currently modified element (of type title) in
order to retrieve an element of type slide.

Given that the dynamic context cannot be known beforehand, in
particular local variable values, their use in patterns is forbidden.
Later in this paper the conversion algorithm will be given in more
details in section 5.1.

4.2.4 Instructions
During an incremental transformation session, the dynamic
context must be restored in order to perform the newly introduced
modification. The target context of the resulting document must be
restored also. In order to understand how the different XSLT
instructions affect the transformation process, they have been
classified under a set of categories. This will help later in defining
the data that needs to be stored in the cache. Global instructions
(attribute-set, namespace-alias, etc.) are static parameters
executed at the beginning of the transformation and not depend on
the source document. Modularization instructions (import,
include, etc.) define how transformation sheets are physically
organized, so they do not depend on the source document.
Variables (variable, param) instructions allow defining global or
local variables and template parameters. The variables are a
significant part of a processor context (see the previous section).
Flow instructions (apply-templates, for-each, if, etc.), allow the
control of the transformation execution and in particular the choice
of source node to be instantiated (apply-templates instruction).
Producer instructions (value-of, element, etc.) generate
fragments of the target document. These instructions are the
bridge between transformations and the target documents and are
very valuable in restoring the target context.

4.2.5 Execution flow tree
During a transformation, the instructions are executed
sequentially. These instructions will perform some actions and
depending on the previous classification some data will need to be
stored. The execution flow tree is a representation of the
instructions execution. Many systems have used variants of the
execution flow tree mainly in the context of side-effect languages
[1][11]. The goal of theses systems is to provide execution
backtracking facilities in order to help program debugging: during
the debugging phase, the user can undo the execution of some
instructions, change program inputs and re-execute the program
incrementally. The incremental execution relies on the tracing of
program execution to create history logs (list of couples (line,
variables values)). From theses logs, the memory state can be
restored and the re-execution can be achieved. The main problem
in these systems is that the time and space costs can be prohibitive.
In the transformation context, the problem varies according to the
following aspects:

• The execution of the transformation is generally bounded.
The size of history is much smaller.

478

• Not all the execution history needs to be stored. As the
language is side effect free, restoring dynamic context such
as variable values can be easily and rapidly achieved.

• The incremental transformation takes place after an entire
initial transformation has been performed.

• The modification of transformation sheets (the program)
during the incremental session is possible.

In our system, when the user starts a transformation session, the
execution flow tree is built in a batch mode first. In order to update
incrementally the source document or the transformation sheet, we
need to determine exactly what to store in the tree. Storing all of
the expression evaluations, the template instantiated for a source
node and the links to the target document would require a huge
amount of memory.
After an editing operation, some instructions need to be re-
executed for a given source node. If we suppose that the processor
is able to determine this set of instructions, executing them would
require the minimal processor context (the part which affects their
execution) as well as the target context. In order to set the
processor context and the target context from any instruction we
need to traverse up the execution flow.

Figure 4 represents a fragment of the transformation described
earlier in section 4.2.1.

The execution flow tree structure is composed of so-called
execution nodes. Execution nodes of type flow contain the value
of their associated expression. For instance, apply-templates
execution nodes have template nodes as direct children.
Template nodes have links to the source nodes. Therefore, from
apply-templates nodes we can retrieve source nodes that
composed the context node list. Producer nodes contain data
related to the target tree. This data will serve to restore the target
context. For example, the instruction element has a link to the
element it generates. For a character producer such as value-of
instruction, only the number of generated characters needs to be
stored. Execution nodes that really need to be stored depend on the
incremental execution optimization used during the incremental
session (see section 5.2).

The data structure presented here allows having at any instant of
an incremental transformation session the source and target
contexts. Even if we need some extra processing to obtain for
example, variable values, this data structure is the key data
representation of our incXSLT incremental processor.

5. INCREMENTAL TRANSFORMATION
In this section, we describe how to select the instructions to be re-
evaluated. This selection is illustrated through the example given
in section 4.2.1. After that, we show how the processor updates the
target document by incrementally executing the transformation
instructions.

5.1 Re-evaluation rules
After the source document has been modified, the incremental
processor determines which instructions need potentially to be re-
evaluated. This step relies on the preprocessing of re-evaluation
rules: each re-evaluation rule consists of a pattern associated with
a list of instructions to be re-evaluated. When a source node
matches the pattern, then the list of associated instructions is likely
to be re-executed. For instance, the instruction <xsl:apply-
templates select=“section”/> (line 18) will never be involved in
the insertion of a title element. In contrary, when a section
element is added, this expression can possibly be re-evaluated
(depending on the depth level of the section). This basic selection
of instructions to be re-evaluated can be enhanced. For instance,
by taking into account that the expression is declared in a template
that matches only article elements. In this case we can more
accurately say if the apply-templates instruction needs to be re-
evaluated. The apply-templates instruction will be executed only
for nodes that match the article/section pattern.

The list of re-evaluation rules is built by considering all the
expressions in the transformation sheet. Each expression is
converted to a set of patterns and for each pattern a re-evaluation
rule is created with the corresponding instruction.

In the next section, we describe how to implement a basic
selection mechanism. Then we propose some optimizations based
on context declaration, and variable de-referencing.

5.1.1 Basic selector
As said earlier, the creation of re-evaluation
rules set from an expression can be quite
complex. It consists of the identification of
patterns that matches source nodes sensitive to
the modification of the expression’s result.
These patterns must not contain dynamic
processor context references, such as variable
value and context size. In the following, we first
consider the conversion of expressions without
giving details of how location path conversion is
achieved. Location path is introduced gradually.
First, we describe location path conversion
without considering predicates. Then, a more
general approach including predicates is given.
At the end of this section, we consider the case
where template instantiation must be re-
considered after a source modification.

5.1.1.1 Expression conversion
An expression is composed of operations,
functions, variables and basic objects. The
conversion of each of these components relies
on the following informal algorithm: Figure 4. The execution flow tree of paper example.

479

• Operations such as and, or, equals generates patterns
corresponding to those produced by the operation arguments.
For example, the expression count(section) or position()>3
generates two patterns: section and node(). The number 3
does not generate patterns (see basic objects conversion
rules).

• Functions:

• Functions that use the dynamic context, such as
position() or last() functions, must be re-evaluated
when the current node list or the current node position
changes. At this stage, as no additional information is
provided, this kind of functions are replaced by the
node() pattern. In section 5.1.3, we describe a basic
optimization operation based on context-awareness.

• Functions conversion with location paths as parameters
produces re-evaluation rules corresponding to those of
the location paths conversion. For example,
count(section) expression is converted to section
pattern.

• The other functions do not generate any patterns. For
example, the expression floor(43/2) never needs to be re-
evaluated. Therefore, it does not generate patterns.

• A variable reference generates the node() pattern. It
corresponds to the values the variable can take, in particular a
node set (represented by node() pattern).

• Basic objects, such as number, string or boolean do not
generates any patterns.

5.1.1.2 Location path without predicates conversion
The result of the location path is obtained by querying source
nodes during each step of the path traversal. Consequently, as the
result of the location paths depends on the results of the
intermediate node sets, a pattern is generated for each of these
intermediate node-sets. For example, the evaluation of
artheader/authorgroup location path can change if an artheader
element or an authorgroup element are added or removed in the
source document. In this case, two re-evaluation rules are created
for this particular expression.

In addition, the re-evaluation of an expression is not only required
when the result node-set change. In fact, when expressions are
converted to the string type, the evaluation of the expression is the
list of text nodes descendants of the first node in the node-set.
Therefore, a pattern is added in order to reflect a modification of
these text nodes. For example, the expression title (line 16), as
specified in the value-of instruction, is converted to a string type.
So the conversion generates two patterns: title and
title/descendant::text().

Taking into account axis relationship between steps can provide a
basic optimization. In the previous example, the addition of an
artheader element changes the path result only if this later
contains an authorgroup element as a child. In the same manner,
the addition of an authorgroup element changes the evaluation of
the location path only if his parent is an artheader element.

5.1.1.3 Location path with predicates conversion
To identify if the evaluation of predicates can change after a
source modification, they are converted in the same manner as
described in the previous sections. The predicate evaluation is
achieved in the context determined by the path step attached to the
predicate. As a consequence, all the functions, which require the

dynamic context (such as position()), can be converted as is. Only
variable references must be converted.

5.1.2 Instantiation re-consideration
The execution of the apply-templates (and apply-imports)
instruction, more than the nodes selection, must search for the
template that best matches every selected node. This search
operation (the instantiation process) may be reconsidered when a
document source is modified. For instance, consider the following
template definitions:

<xsl:template match=“section[title]”> ... </xsl:template>
<xsl:template match=“section”> ... </xsl:template>

The instantiation of a section element can change when a title
element is added (or removed) to a section element. So an apply-
templates instruction that has selected section nodes need
potentially to be re-evaluated. In general, the instantiation process
must consider all the templates defined in the transformation
sheets. Therefore, each time the source document is modified, the
entire previous instantiations must be reconsidered. To avoid this
cost overhead, we take into account the fact that, most of the time,
only some template rules can be instantiated for a given apply-
templates instruction. From theses apply-templates/template
dependencies, the instantiation processes related to a particular
apply-templates instruction can be limited to a subset of the
template rules. In summary, a re-evaluation rule is added for each
template pattern that depends on an apply-templates instruction.
Notice that the computation of apply-templates/template
dependencies can also be used to enhance the instantiation
processing performance during a batch transformation.

Formally, the problem of computing apply-templates/template
dependencies can be formulated as following:

Let Na be the node set that the apply-templates instruction a can
select. Let Nt be the node set that the template rule t can
instantiate. The template rule t is said to be dependent on the
apply-templates a if and only if a node n belonging to Na that
belong to Nt exist. Formally:

T depends on A ⇔ ∃ n ∈ Na / n ∈ Nt ⇔ A match T
In practice, the way to determine such dependencies is to perform
a pattern matching between the expression of the apply-
templates instruction (and not the result of the expression) and
template’s pattern. Compared to classical tree pattern matching,
the pattern matching is achieved here between two node-sets
(represented by a pattern) and not between a node and a pattern.

In the following, we give some formulas in order to perform
pattern matching between expressions and patterns. We do not
present an exhaustive case study. We rather focus only on the
child and attribute axes cases.

Figure 5. General syntax of path expressions (without

predicates).
The following formulas are written using the expression general
syntax of the apply-templates instruction, as illustrated in
Figure 5.

480

An expression matches a pattern by respecting the following rules:

• Node test constructor:

• nodeTesta match node()t ⇔ true

• nodeTesta match text()t ⇔ ∃n ∈ nodeTesta /
type(n)=text()

• nodeTesta match nameTestt ⇔ ∃n ∈ nodeTesta /
type(n)=element() ∧ (name(n) = name(nameTestt) ∨
name(nameTestt) = ‘*’ ∨ name(n) = ‘*’)

• Axe constructor:

• axea::nodeTesta match child::nodeTestt ⇔ nodeTesta
match nodeTestt ∧ axea = child

• axea::nodeTesta match attribute:nodeTestt ⇔ nodeTesta
match nodetestt ∧ axea = attribute.

• Step constructor:

• step2a/ axea::nodeTesta match step2t/axet::nodeTestt ⇔
axea::nodeTesta match axet::nodeTestt ∧ step2a match
step2t

• Union constructor:

• locationPatha2 | locationPatha1 match locationPatht1 ⇔
locationPatha2 match locationPatht2 ∨ locationPatha1
match locationPatht1

In the previous sections, we have presented a basic selector that
allows selecting the instructions to be re-evaluated for a particular
node modification. This set of instructions is not minimal in that it
contains instructions that are not necessary in the re-evaluation. In
the following section, we will describe two techniques that we
have introduced to minimize the number of these instructions.

5.1.3 Optimizations
5.1.3.1 Context awareness
The first optimization technique is the context declaration
awareness. This optimization relies on the context of the
instruction declaration. Three levels of this context are identified:

• The context inside a predicate: when converting a
predicate, relative location paths inside the predicate are
evaluated from the predicate’s step. Such predicates are then
prefixed by the left part of the predicate’s step.

• The context inside the template declaration. Each relative
pattern is evaluated on nodes that the template (or for-each
instruction) has matched. Therefore, adding the template
pattern as a prefix can refine relative patterns found during
the basic selection. For instance, the section pattern
associated to the apply-templates instruction line 18 can be
transformed to article/section pattern.

• The context outside the template declaration. In some
cases, a template can be instantiated by a limited number of
apply-templates instructions (apply-templates/templates
dependencies: see section 5.1.2). This information can be
used to refine the re-evaluation pattern. Formally, let at1, at2,
… atn the apply-templates instructions that can instantiate
the template t. Let p1, p2, … pn the relative patterns of the
template’s instructions. Let pat1, pat2, …patn the (recursive)
pattern conversion attached to at1, at2, … atn apply-
templates expressions. Therefore, p1, p2, … pn patterns can
be refined by the following patterns: (pat1| pat2 |… | patn)/p1,
(pat1| pat2 | … | patn)/p2, … (pat1| pat2 |… | patn)/pn. This

expression of patterns must then be transformed to its
canonical form. The canonical form allows the identification
of equivalent patterns; which in turn allows removing
redundancies from the pattern list.

In comparison with the basic selection, all the patterns obtained
now are more precise. Furthermore, they have generally less
associated instructions to be re-evaluated. For instance, in the
basic selection, when the title of a section is modified, eight
instructions need to be re-evaluated (lines 18, 24, 51, 57, 69, 17,
48 and 53). While with the enhanced selection, we have just five
that need to be re-evaluated. Moreover, this selection is able to
distinguish between a section inserted in another section and a
section inserted in an article.

5.1.3.2 Variables
The second optimization is related to variables. In some cases, the
value of variables is just limited to a subset of values. In the
example given in the annex A (line 36), the value of the variable
named heading depends only on the number of section ancestors
of another section. So the value of the attribute named name (line
45) need to be re-evaluated only if a section element is added (or
removed) in the source document. By de-referencing the variables
that support de-referencing (with no reference to a parameter), it’s
then possible to refine the pattern obtained by a conversion of an
expression with a variable. A more general solution that covers
parameter references is under consideration, in particular, by using
template/apply-templates dependencies.

5.1.4 Synthesis
In the example given in section 4.2.1, we gave the example of a
modification of the source document by inserting a new section
element to the article element. The result of the selective re-
computation, obtained by applying the enhanced selector,
corresponds to the instructions at lines 18, 25, 45, 48, and 51.
Compared to the instructions that ideally needed to be re-
computed (see section 4.2.1), two additional instructions need to
be re-evaluated. In fact, the instructions at lines 45 and 48 are re-
evaluated because they contain a variable reference. If we consider
that we had 18 instructions that compose the transformation sheet,
our selection method reduced the size of the instructions under
consideration to five instructions.

In general, obtaining an efficient incremental transformation
depends on the manner the transformation sheet has been written.
For example, if the transformation sheet programmer limits the
use of wildcards in expressions, the performance of the
incremental processor will increase substantially. This is due to a
more accurate selection. In general, the transformation sheet
design affects not only the incremental transformation but also the
batch transformation.

As the list of instructions to be re-evaluated is known beforehand,
some hints on the incremental transformation processing cost can
be obtained. For example, if the instruction list to be re-evaluated
is short and if it does not contain instructions of flow type, the re-
evaluation is likely to be very fast. Having performance hints is
very valuable in an authoring environment. For instance, when a
character is typed on the target, a high priority can be set on
instructions that update the corresponding target (instruction with
a lower cost). The slower instructions that allow propagating this
change in the document can be executed with a lower priority.

481

5.2 Incremental execution
5.2.1 Basic process
Thanks to the list of re-evaluation rules obtained using the
selection introduced in the previous section, the instruction to be
re-evaluated can now be determined. This is achieved by applying
a pattern matching between re-evaluation rule patterns and the
node currently being modified. Instructions associated to a pattern
that matches that node need to be re-evaluated.

The processing of these instructions is achieved by performing a
depth first traversal of the execution flow. When an execution
node is about to be traversed, depending on the execution node
type, a specific action is executed:

• Flow. If the instruction needs to be re-evaluated, then it is
executed incrementally as described in the algorithm below
for the apply-templates instruction.

• Producer. If the instruction needs to be re-evaluated, then it
is executed. Otherwise, the target context is only updated.
For character producer instructions, the number of previously
generated characters is increased. For element producer
instructions, the number of characters is set to zero and the
associated target node is set to be the current one.

• Variable. The variable declaration is pushed on a variable
stack. Its value is not computed now but later when needed.

• Parameter. The parameter declaration is also pushed on the
variable stack and its value computed when needed.

At the end of the traversal of an execution node, similar actions
are performed at the node level: variables declarations are popped
from the stack, etc.

When an instruction is executed, the processor starts by computing
the value of variables needed by the expression. Then, depending
on the instruction, an incremental algorithm is executed. Figure 6
gives the algorithm that allows the incremental execution of the
apply-templates instruction.

nodeList <- Evaluate select expression
If (sort instruction specified)
 sort(nodeList)
End If
For each Node in NodeList
 If (node ∉ previousNodeList)
 // The source node was not selected during the previous
transformation
 Execute apply-templates instruction with Node as context
 Else
 // Test if the template matching has changed
 template <- findTemplate(node)
 If (template = previousTemplate(node))
 // Same template
 If (not same position as previously)
 // The generation order has changed
 changeTargetPosition()
 End If
 Incrementally execute children with Node as context
 Else

 // Not the same template
 Destroy previously generated target
 Execute apply-templates instruction with Node as
context
 End If
 End
End For
Figure 6. The incremental algorithm for the apply-templates

instruction

The algorithm for the for-each instruction is quite similar, except
that there is no template matching needed. As a consequence, the
test that checks if template matching has changed is not used. On
the contrary, for the apply-imports instruction the algorithm
contains only that test. For the value-of instruction, the new
characters replace the previously generated ones.

As the target document is traversed in parallel to the execution
flow tree, producer execution nodes don’t need to be stored.
Therefore, memory consumption is substantially reduced (see
evaluations in section 6).

5.2.2 Optimizations
In this section, we present two optimizations that can improve the
performance of the incremental processor.

The first one is the source nodes selection. When an instruction is
to be re-executed, it is re-executed for all instantiated source
nodes. For template rules that are instantiated frequently, the
number of re-executions can be more than necessary. In some
cases, it is possible to prevent some superfluous executions: for
instance, the instruction line 53 need to be re-evaluated only for
parent node of the editing node and not for all nodes instantiated
by the corresponding rule.

To achieve this selection, depending on what triggered the
instruction re-evaluation, the selection will be achieved in two
manners. First, the result node set of the location paths that
composed the expression has changed. In this case, the list of
source nodes can be easily obtained in the same manner as the
expression evaluation. Starting from the editing node, the location
path expression is executed in the reverse order (from right to left)
until the end of path. The result is a set of source nodes. For
example, the instruction line 56 needs to be re-evaluated when a
section element is added or removed. Source nodes for which this
instruction must be re-evaluated is given by the evaluation of the
reverse expression section/descendant::section. The context
node for evaluating this expression is the edited section element.
Obviously, this optimization is possible only if the expression
does not contain dynamic references.

Second, the list of nodes in the context (context node list) has
changed. It must be restored (in the same manner as incremental
execution of apply-templates instruction). If the edited node
appears in the context node list (or do not appear anymore), then
the expression must be re-executed for the entire source nodes
contained in the context node list. As the context node list cannot
change without an execution of apply-templates and for-each
instruction, computing the list of source nodes can be achieved
during the execution of these instructions.

The second optimization is the pattern inclusion. In order to
identify the list of instructions to re-evaluate, a pattern matching is

482

performed on the entire re-evaluation rules set. To avoid such an
overhead, each time a pattern is converted from an expression, the
expression’s instruction is added to the re-evaluation rules that
include the new pattern. A pattern P1 includes another pattern P2
when all nodes that matches pattern P2 match pattern P1. So, in
order to find the list of instructions to re-evaluate, it is sufficient to
find the first pattern that matches. Algorithms described in section
5.1.2 can be used to perform pattern matching between patterns.

The incremental transformation with these optimizations allows
updating, in a reasonably responsive application, the target
documents after a change in the source document.

6. EVALUATION
The techniques, presented earlier, allow the implementation of
incremental transformation processors. They have been partially
integrated in the Xalan batch processor from the Apache
Foundation Software [3]. The basic selector, presented in section
5.1.1, has been almost completely implemented. In the current
version of our application, it supports a subset but significant part
of the expression constructors. The context awareness inside the
template declaration optimization, presented in section 5.1.3, has
been implemented. An extended pattern matching that takes into
account the new pattern definition, introduced in section 4.2.3, has
also been implemented. The incremental execution process
traverses the execution tree. Variables and parameters are
evaluated during this tree traversal.

In order to evaluate our current implementation of the
incremental processor, some measures of the costs in terms of
speed and memory space requirement have been achieved. They
are summarized in Table 1 and Table 2.

Table 1. Speed of the transformations applied to Norman
Walsh’s docbook transformations sheet.

 Batch Dummy Change
article title

Insert
section

Number of
instructions
to re-execute

N/A 0 795 819

Time to get
instruction to
re-evaluate

N/A 0 80ms 80ms

Variables
computed

6572 6572 6572 6572

Variable
access count

10279 6899 6899 6983

Overall
timing/ratio

4,5s 1 2,8s 0.62 2,8s 0.62 2,9s 0.64

These tables show that incremental transformations are very
promising in terms of the overall system’s performance. For speed
consideration, we have measured some particular operations such
as appending an author in the working example. The result is that
most of the changes remain within a reasonable processing time.
This is very important since incremental processors are used in an
interactive mode and have to remain responsive. The memory
usage is not prohibitive too. The overhead that we measured, that
is mainly due to the size of the execution flow tree, represents a
small fraction of the memory occupied by the source and target
documents. We have applied our measures to two docbook
documents, using Norman Walsh’s transformation sheets [21] to

produce HTML documents. These transformation sheets contain
1236 templates and are not optimized for incremental processing.
It contains a lot of generic expressions and variables.
Consequently, the number of instructions to re-evaluate is widely
over-estimated. And, a lot of processing time is wasted because of
systematic variable values computation during tree traversal,
which represent close to 100 percent of incremental process. We
expect that the implementation of optimizations such as template
context awareness and variable de-referencing (see section 5.1.3)
will strongly improve incremental performance for such
transformation sheets.

Table 2. Speed of the transformations applied to extended
version of transformation sheet in Annex A.

 Batch Dummy Add an
author

Insert
section

Number of
instructions
to re-execute

N/A 0 18 20

Time to get
instruction to
re-evaluate

N/A 0 <10ms <10ms

Variables
computed

133 133 133 133

Variable
access count

1563 0 25 36

Overall
timing/ratio

2,3s 1 0,1s 0.04 0,2s 0.08 0,3s 0.13

Table 3. Memory size of the transformations (Norman

Walsh’s docbook transformations sheet).

 Normal
document

High document

Source Document
(Kbytes)

193 505

Target document
(Kbytes)

224 596

Execution flow tree
(without target)
(Kbytes)

106 259

Execution flow tree
(with target) (Kbytes)

153 364

Ratio
(source + target) /
execution

36% 33%

A second evaluation has been performed on a little transformation
sheet (50 templates) applied to the same documents. This
transformation sheet, which is an extension of the transformation
sheet given in annex A, has been written using few variables and
no wild cards. Consequently, instructions that need to be re-
evaluated are determined more accurately than Norman Walsh’s
transformation sheets.

7. CONCLUSION AND PERSPECTIVES
In this paper, we have presented an incremental transformation
framework called incXSLT. This framework has been
experimented for the XSLT language from the World Wide Web
Consortium. XSLT has gained a very large acceptance and is
currently deployed in several systems such as Web browsers,

483

publishing tools and database systems. In these systems, the XML
content together with the transformation sheets are designed in a
batch mode. Transformation sheets designers usually debug their
sheets using batch processors. This operation is tedious since it
does not allow identifying precisely the error sources. In addition,
it prevents the identification of the immediate effect of source
document or transformation sheet changes in the destination
document. Incremental transformation processors such as incXSLT
represent a better alternative for the design of both the content and
the transformation sheets. It is a first step toward full blown
interactive transformation-based authoring environments.

In the short term, we plan to extend the implementation to support
most of the selector optimizations described in section 5.1. The
goal is to cover incremental transformations closer to real world
source documents and transformation sheets. The second goal is to
allow a more flexible editing of the transformation sheets. For a
lack of space, we have not detailed this aspect in the paper.
Nevertheless, the execution flow tree data-structure remains the
central vehicle of the transformation updates.

In the future, we expect that the specification of transformation
sheets will remain a difficult task. We think that, in the longer
term, it could be useful to identify common transformation
schemes in order to make them available as building blocks.
Ideally, making the composition of such building blocks available
through a GUI interface will help greatly in making
transformations accessible to a wider range of users. A second
goal that we need to address is the problem of reverse
transformations. The reverse transformation problem can be
formulated as follows: for a given target modification, the problem
is to find all the modifications to apply on the source document to
obtain that particular modification. This allows suggesting to a
document author the locations in the source document where to
apply a change in order to have that target modification.

8. REFERENCES
[1] H. Agrawal, R. A. DeMillo, and E. H. Spafford, “An

execution-Backtracking Approach to Debugging”, IEEE
Software, pp. 21-26, May 1991.

[2] Altova, “XML Spy 3.0”,
http://www.xmlspy.com/, 2000.

[3] Apache XML project, “Xalan”, 2000.
http://xml.apache.org/xalan/index.html

[4] Balise, “Balise 4”, 2000.
http://www.us.balise.com/products/balise/index.htm

[5] “Composite Capabilities/Preference Profiles: Requirements
and Architecture”, M. Nilsson, J. Hjelm and H. Ohto, W3C
Working Draft, available at http://www.w3.org/TR/CCPP-
ra/, 21 July 2000.

[6] “Document Object Model (DOM) Level 2 Views
Specification”, W3C Recommendation, available at
http://www.w3.org/TR/DOM-Level-2-Views/, 13 November
2000.

[7] “Extensible Stylesheet Language (XSL) Version 1.0”, S.
Adler and Co, W3C Working Draft, available at
http://www.w3.org/TR/xsl/, 18 October 2000.

[8] C. Hoffmann and M. O’Donnell, “Pattern Matching in
Trees”, Journal of the Association for Computing Machinery,
vol. 29, n°1, pp 68-95, January 1982.

[9] M. Kay, “XSLT Programmer's Reference”, Wrox Press,
2000.

[10] Y. A. Liu, “Efficiency by incrementalization: An
introduction”, Higher-Order and Symbolic Computation,
13(4), 2000.

[11] R. H. B. Netzer and M H. Weaver, “Optimal Tracing and
Incremental Reexecution for Debugging Long-Running
Programs”, In Proceedings of the ACM SIGPLAN '94
conference on Programming language design and
implementation, 1994.

[12] “Namespaces in XML”, T. Bray, D. Hollander, A.
Layman. W3C Recommendation, available at
http://www.w3.org/TR/REC-xml-names, 14 January 1999

[13] Oasis, “Docbook”,
http://www.docbook.org.

[14] Omnimark, “Guide to OmniMark 5”, 2000.
http://www.omnimark.com/develop/om5/doc/

[15] V. Quint, C. Roisin and I. Vatton, “A Structured Authoring
Environment for the World-Wide Web”, Proceedings of the
Third International World-Wide Web Conference, Computer
Networks and ISDN Systems, vol. 27, num. 6, pp. 831-840,
April 1995.

[16] G. Ramalingam and T. Reps, “A categorized bibliography on
incremental computation”, In Conference Record of 20th
Annual ACM Symposium on Principles of Programming
Languages, pages 502-510, ACM, New York, Jan 1993.

[17] T. Reps, T. Teitelbaum and A. Demers, “Incremental
context-dependent analysis for language-based editors”,
ACM Trans. Program. Languages System, vol. 5, num 3, pp.
449-477, July 1983.

[18] SoftQuad, “XMetal 2.0”, 2000. http://www.xmetal.com/

[19] Vervet Logic, “XML Pro v2”, 2000. http://www.vervet.com/

[20] L. Villard, C. Roisin and N. Layaïda, “A XML-based
multimedia document processing model for content
adaptation”, In Proceeding of Digital Documents and
Electronic Publishing (DDEP00), 2000.

[21] N. Walsh, “XSL DocBook Stylesheets”,
http://nwalsh.com/docbook/xsl/index.html, 30 January 2001.

[22] WhiteHill, “<xsl>Composer”, 2001.
http://www.whitehill.com/

[23] “XML Path Language (XPath)”, J. Clark and S. DeRose,
W3C Recommendation, available
http://www.w3.org/TR/xpath.html, 16 November 1999.

[24] “XSL Transformations (XSLT)”, J. Clark, W3C
Recommendation, available at http://www.w3.org/TR/xslt,
16 November 1999.

484

ANNEX A

1. <?xml version=“1.0” encoding=“ISO-8859-1”?>
2.
3. <xsl:stylesheet version=“1.0”

xmlns:xsl=“http://www.w3.org/1999/XSL/Transform”>
4. <xsl:output method=“html”/>
5.
6. <xsl:param name=“toc.depth”>2</xsl:param>
7.
8. <xsl:template match=“article”>
9. <html>
10. <body>
11. <p align=“center”>
12. <xsl:value-of

select=“artheader/authorgroup/author/firstname”/>
13. <xsl:text> </xsl:text>
14. <xsl:value-of

select=“artheader/authorgroup/author/lastname”/>
15. <xsl:text>Presents</xsl:text>
16. </p>
17. <h1 align=“center”><xsl:value-of

select=“title”/></h1>
18. <xsl:apply-templates select=“section”>
19. <xsl:with-param name=“indent”>0</xsl:with-

param>
20. </xsl:apply-templates>
21. <hr/>
22. <table border=“1” width=“100%”>
23. <tr>
24. <td><xsl:apply-templates

select=“artheader/authorgroup”/></td>
25. <td>Nb upper sections : <xsl:value-of

select=“count(section)”/></td>
26. <td>Last modification : <xsl:value-of

select=“artheader/date”/></td>
27. </tr>
28. </table>
29. </body>
30. </html>
31. </xsl:template>
32.
33. <xsl:template match=“section”>
34. <xsl:param name=“indent”>0</xsl:param>
35.
36. <xsl:variable name=“heading”>
37. <xsl:choose>
38. <xsl:when test=“count(ancestor::section) =

0”>h2</xsl:when>
39. <xsl:when test=“count(ancestor::section) =

1”>h3</xsl:when>
40. <xsl:when test=“count(ancestor::section) =

2”>h4</xsl:when>
41. <xsl:otherwise>p</xsl:otherwise>
42. </xsl:choose>
43. </xsl:variable>
44.
45. <xsl:element name=“{$heading}”>
46. <xsl:attribute name=“align”>left</xsl:attribute>
47. <xsl:attribute name=“style”>padding-left=
48. <xsl:value-of select=“$indent”/>px

49. </xsl:attribute>
50.
51. <xsl:number value=“position()” format=“1.”/>
52. <xsl:text> </xsl:text>
53. <xsl:value-of select=“title”/>
54. </xsl:element>
55.
56. <xsl:if test=“count(ancestor::section) < $toc.depth

- 1”>
57. <xsl:apply-templates select=“section”>
58. <xsl:with-param name=“number-

format”>a.</xsl:with-param>
59. <xsl:with-param name=“indent” select=“$indent

+ 100”/>
60. </xsl:apply-templates>
61. </xsl:if>
62. </xsl:template>
63.
64. <xsl:template match=“authorgroup”>
65. <xsl:for-each select=“author”>
66. <xsl:value-of select=“firstname”/>
67. <xsl:text> </xsl:text>
68. <xsl:value-of select=“lastname”/>
69. <xsl:choose>
70. <xsl:when test=“position()=last()-1”><xsl:text>

and </xsl:text></xsl:when>
71. <xsl:when test=“position() < last()-

1”><xsl:text>, </xsl:text></xsl:when>
72. <xsl:otherwise/>
73. </xsl:choose>
74. </xsl:for-each>
75. </xsl:template>
76.
77. </xsl:stylesheet>

485

