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Abstract
We present an algorithm to solve XPath decision problems under
regular tree type constraints and show its use to statically type-
check XPath queries. To this end, we prove the decidability of a
logic with converse for finite ordered trees whose time complexity
is a simple exponential of the size of a formula. The logic corre-
sponds to the alternation free modalµ-calculus without greatest
fixpoint restricted to finite trees where formulas are cycle-free.

Our proof method is based on two auxiliary results. First, XML
regular tree types and XPath expressions have a linear translation
to cycle-free formulas. Second, the least and greatest fixpoints are
equivalent for finite trees, hence the logic is closed under negation.

With these proofs, we describe a practically effective system
for solving the satisfiability of a formula. The system has been
experimented with some decision problems such as XPath empti-
ness, containment, overlap, and coverage, with or without type con-
straints. The benefit of the approach is that our system can be effec-
tively used in static analyzers for programming languages manipu-
lating both XPath expressions and XML type annotations (as input
and output types).

1. Introduction
This work is motivated by the the need of efficient type checkers for
XML-based programming languages where XML types and XPath
queries are used as first class language constructs. In such settings,
XPath decision problems in the presence of XML types such as
DTDs or XML Schemas arise naturally. Examples of such decision
problems include emptiness test (whether an expression ever se-
lects nodes), containment (whether the results of an expression are
always included in the results of another one), overlap (whether two
expressions select common nodes), and coverage (whether nodes
selected by an expression are always contained in the union of the
results selected by several other expressions).

XPath decision problems are not trivial in that they need to be
checked on a possibly infinite quantification over a set of trees. An-
other difficulty arises from the combination of upward and down-
ward navigation on trees with recursion [42].

The most basic decision problem for XPath is the emptiness
test of an expression [3]. This test is important for optimization of
host languages implementations: for instance, if one can decide at
compile time that a query result is empty then subsequent bound
computations can be ignored. Another basic decision problem is
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the XPath equivalence problem: whether or not two queries always
return the same result. It is important for reformulation and opti-
mization of an expression [20] , which aim at enforcing operational
properties while preserving semantic equivalence [29]. The most
essential problem for type-checking is XPath containment. It is re-
quired for the control-flow analysis of XSLT [33]. It is also needed
for checking integrity constraints [12] and for checking access con-
trol in XML security applications [13].

The complexity of XPath decision problems heavily depends on
the language features considered. Previous works [38, 3] showed
that including general comparisons of data values from an infinite
domain may lead to undecidability. Therefore, we focus on a XPath
fragment which covers all features except counting [8] and data
values.

In order to solve XPath decision problems, two problems need
to be solved. First, identify the most appropriate logic with suf-
ficient expressiveness to capture both regular tree types and our
XPath fragment. Second, solve efficiently the satisfiability problem
which allows to test if a given formula of the logic admits a satis-
fying finite tree.

The essence of our results lives in a sub-logic of the alternation
free modalµ-calculus (AFMC) with converse, some syntactic re-
strictions on formulas, without greatest fixpoint, and whose models
are finite trees. We prove that XPath expressions and regular tree
type formulas conform to these syntactic restrictions. This allows
to prove that formulas of the logic are cycle-free. Boolean closure
is the key property for solving the containment (a logical implica-
tion). In order to obtain closure under negation, we prove that the
least and greatest fixpoint operators collapse in a single fixpoint op-
erator. Surprisingly, the translations of XML regular tree types and
a large XPath fragment comes at no cost since they are linear in the
size of the corresponding formulas in the logic. The combination
of these ingredients lead to our main result: a satisfiability algo-
rithm for a logic for finite trees whose time complexity is a simple
exponential of the size of a formula.

The decision procedure has been implemented in a system for
solving XML decision problems such as XPath emptiness, con-
tainment, overlap, and coverage, with or without XML type con-
straints. The system can be used as a component of static analyzers
for programming languages manipulating both XPath expressions
and XML type annotations for both input and output.

2. Outline
The paper is organized as follows. We first present our data model,
trees with focus, and our logic in§3 and§4. We next present XPath
and its translation in our logic in§5. Our satisfiability algorithm
is introduced and proven correct in§6, and a few details of the
implementation are discussed in§7. Applications for type checking
and some experimental results are described in§8. We study related
work in §9 and conclude in§10.



Detailed proofs and implementation techniques can be found in
a long version of this paper [19].

3. Trees with Focus
In order to represent XML trees that are easy to navigate we usefo-
cused trees, inspired by Huet’s Zipper data structure [24]. Focused
trees not only describe a tree but also its context: its previous sib-
lings and its parent, recursively. Exploring such a structure has the
advantage to preserve all information, which is quite useful when
considering languages such as XPath that allow forward and back-
ward axes of navigation.

Formally, we assume an alphabetΣ of labels, ranged over byσ.

t ::= σ[tl ] tree
tl ::= list of trees

ε empty list
| t :: tl cons cell

c ::= context
(tl ,Top, tl) root of the tree

| (tl , c[σ], tl) context node
f ::= (t, c) focused tree

In order to deal with decision problems such as containment, we
need to represent in a focused tree the place where the evaluation
was started using astart mark, often called “mark” in the following.
To do so, we consider focused trees where a single tree or a single
context node is marked, as inσs[tl ] or (tl , c[σs], tl). When the
presence of the mark is unknown, we write it asσ◦[tl ].

We writeF for the set of finite focused trees with a single mark.
Thenameof a focused tree is defined asnm(σ◦[tl ], c) = σ. We now
describe how to navigate focused trees, in binary style. There are
four directions that can be followed: for a focused treef , f 〈1〉
changes the focus to the children of the current tree,f 〈2〉 changes
the focus to the next sibling of the current tree,f

〈
1
〉

changes the
focus to the parent of the treeif the current tree is a leftmost sibling,
andf

〈
2
〉

changes the focus to the previous sibling.
Formally, we have:

(σ◦[t :: tl ], c) 〈1〉 def
= (t, (ε, c[σ◦], tl))

(t, (tl l, c[σ
◦], t′ :: tlr)) 〈2〉

def
= (t′, (t :: tl l, c[σ

◦], tlr))

(t, (ε, c[σ◦], tl))
〈
1
〉 def

= (σ◦[t :: tl ], c)

(t′, (t :: tl l, c[σ
◦], tlr))

〈
2
〉 def

= (t, (tl l, c[σ
◦], t′ :: tlr))

When the focused tree does not have the required shape, these
operations are not defined.

4. The Logic
We introduce the logic to which XPath expressions and XML
regular tree types are going to be translated, a sub-logic of the
alternation free modalµ-calculus with converse. We next introduce
a restriction on the formulas we consider and give an interpretation
of formulas as sets of finite focused trees. We then show that the
logic has a single fixpoint for these models and that it is closed
under negation.

In the following definitions,a ∈ {1, 2, 1, 2} areprogramsand
atomic propositionsσ correspond to labels fromΣ. We also assume
thata = a. Formulas, defined in Fig.1 include the truth predicate,
atomic propositions (denoting the name of the tree in focus), start
propositions (denoting the presence of the start mark), disjunction
and conjunction of formulas, formulas under an existential (denot-
ing the existence a subtree satisfying the sub-formula), and least
and greatest nary fixpoints. We chose to include a nary version of
the latter because regular types are often defined as a set of mutu-

Lµ 3 ϕ,ψ ::= formula
> true

| σ | ¬σ atomic prop (negated)
| s | ¬s start prop (negated)
| X variable
| ϕ ∨ ψ disjunction
| ϕ ∧ ψ conjunction
| 〈a〉ϕ | ¬ 〈a〉> existential (negated)
| µXi.ϕi in ψ least nary fixpoint
| νXi.ϕi in ψ greatest nary fixpoint

Figure 1. Logic formulas

J>KV
def
= F JσKV

def
= {f | nm(f) = σ}

JXKV
def
= V (X) J¬σKV

def
= {f | nm(f) 6= σ}

Jϕ ∨ ψKV
def
= JϕKV ∪ JψKV JsKV

def
=

{
f | f = (σs[tl ], c)

}
Jϕ ∧ ψKV

def
= JϕKV ∩ JψKV J¬sKV

def
= {f | f = (σ[tl ], c)}

J〈a〉ϕKV
def
= {f 〈a〉 | f ∈ JϕKV ∧ f 〈a〉 defined}

J¬ 〈a〉>KV
def
= {f | f 〈a〉 undefined}

JµXi.ϕi in ψKV
def
= let Ti =

(⋂ {
Ti ⊆ F | JϕiKV [Ti/Xi]

⊆ Ti
})

i

in JψKV [Ti/Xi]

JνXi.ϕi in ψKV
def
= let Ti =

(⋃ {
Ti ⊆ F | Ti ⊆ JϕiKV [Ti/Xi]

})
i

in JψKV [Ti/Xi]

Figure 2. Interpretation of formulas

ally recursive definitions, making their translation in our logic more
succinct. In the following we write “µX.ϕ” for “ µX.ϕ in ϕ”.

We define in Fig.2 an interpretation of our formulas as sets of
finite focused trees with a single start mark. The interpretation of
the nary fixpoints first compute the smallest or largest interpretation
for eachϕi then returns the interpretation ofψ.

We now restrict the set of valid formulas tocycle-free formulas,
i.e. formulas that have a bound on the number ofmodality cycles
independently of the number of unfolding of their fixpoints. A
modality cycle is a subformula of the form〈a〉ϕ whereϕ contains
a top-levelexistential of the form〈a〉ψ. (By “top-level” we mean
under an arbitrary number of conjunctions or disjunctions, but not
under any other construct.) For instance, the formula “µX. 〈1〉 (ϕ∨〈
1
〉
X) in X” is not cycle free: for any integern, there is an

unfolding of the formula withnmodality cycles. On the other hand,
the formula “µX. 〈1〉 (X∨Y ), Y.

〈
1
〉
(Y ∨>) in X” is cycle free:

there is at most one modality cycle.
Cycle-free formulas have a very interesting property, which we

now describe. To test whether a tree satisfies a formula, one may
define a straightforward inductive relation between trees and for-
mulas that only holds when the root of the tree satisfies the formula,
unfolding fixpoints if necessary. Given a tree, if a formulaϕ is cy-
cle free, then every node of the tree will be tested a finite number
of time against any given subformula ofϕ. The intuition behind
this property, which holds a central role in the proof of lemma4.2,
is the following. If a tree node is tested an infinite number of times
against a subformula, then there must be a cycle in the navigation in
the tree, corresponding to some modalities occurring in the subfor-



mula, between one occurrence of the test and the next one. As we
consider trees, the cycle implies there is a modality cycle in the for-
mula (as cycles of the form〈1〉 〈2〉

〈
1
〉 〈

2
〉

cannot occur). Hence
the number of modality cycles in any expansion ofϕ is unbounded,
thus the formula is not cycle free.

We give in the appendix an inductive relation that decides
whether a formula is cycle free.

We are now ready to show a first result: in the finite focused-tree
interpretation, the least and greatest fixpoints coincide for cycle-
free formulas. To this end, we prove a stronger result that states
that a given focused tree is in the interpretation of a formula if it
is in a finite unfolding of the formula. In the base case, we use the
formulaσ ∧ ¬σ as “false”.

DEFINITION 4.1 (Finite unfolding).Thefinite unfoldingof a for-
mulaϕ is the setunf (ϕ) inductively defined as

unf (ϕ)
def
= {ϕ} for ϕ = >, σ,¬σ,s,¬s, X,¬ 〈a〉>

unf (ϕ ∨ ψ)
def
=

{
ϕ′ ∨ ψ′ | ϕ′ ∈ unf (ϕ), ψ′ ∈ unf (ψ)

}
unf (ϕ ∧ ψ)

def
=

{
ϕ′ ∧ ψ′ | ϕ′ ∈ unf (ϕ), ψ′ ∈ unf (ψ)

}
unf (〈a〉ϕ)

def
=

{
〈a〉ϕ′ | ϕ′ ∈ unf (ϕ)

}
unf (µXi.ϕi in ψ)

def
= unf (ψ{µXi.ϕi inXi/Xi})

unf (νXi.ϕi in ψ)
def
= unf (ψ{νXi.ϕi inXi/Xi})

unf (µXi.ϕi in ψ)
def
= σ ∧ ¬σ

unf (νXi.ϕi in ψ)
def
= σ ∧ ¬σ

unf (µXi.ϕi in ψ)
def
= unf (νXi.ϕi in ψ)

def
= σ ∧ ¬σ

LEMMA 4.2. Letϕ a cycle-free formula, thenJϕKV = Junf (ϕ)KV .

The reason why this lemma holds is the following. Given a tree
satisfyingϕ, we deduce from the hypothesis thatϕ is cycle free
the fact that every node of the tree will be tested a finite number of
times against every subformula ofϕ. As the tree and the number
of subformulas are finite, the satisfaction derivation is finite hence
only a finite number of unfolding is necessary to prove that the tree
satisfies the formula, which is what the lemma states. As least and
greatest fixpoints coincide when only a finite number of unfolding
is required, this is sufficient to show that they collapse. Note that
this would not hold if infinite trees were allowed: the formula
µX. 〈1〉X is cycle free, but its interpretation is empty, whereas
the interpretation ofνX. 〈1〉X includes every tree with an infinite
branch of〈1〉 children.

We now illustrate why formulas need to be cycle free for the
fixpoints to collapse. Consider the formulaµX. 〈1〉

〈
1
〉
X. Its in-

terpretation is empty. The interpretation ofνX. 〈1〉
〈
1
〉
X however

contains every focused tree that has one〈1〉 child.
In the rest of the paper, we only consider least fixpoints. An

important consequence of Lemma4.2 is that the logic restricted
in this way is closed under negation using De Morgan’s dualities,
extended to eventualities and fixpoints as follows:

¬ 〈a〉ϕ def
= ¬ 〈a〉> ∨ 〈a〉 ¬ϕ

¬µXi.ϕi in ψ
def
= µXi.¬ϕi{Xi/¬Xi} in ¬ψ{Xi/¬Xi}

5. XPath and Regular Tree Languages
XPath [6] is a powerful language for navigating in XML documents
and selecting a set of matching nodes. In their simplest form, XPath
expressions look like “directory navigation paths”. For example,
the XPath expression

/child::book/child::chapter/child::section

LXPath3 e ::= XPath expression
/p absolute path

| p relative path
| e1 p e2 union
| e1 ∩ e2 intersection

Path p ::= path
p1/p2 path composition

| p[q] qualified path
| a::σ step with node test
| a::∗ step

Qualif q ::= qualifier
q1 andq2 conjunction

| q1 or q2 disjunction
| not q negation
| p path

Axis a ::= tree navigation axis
child | self | parent

| descendant| desc-or-self
| ancestor| anc-or-self
| foll-sibling | prec-sibling
| following | preceding

Figure 3. XPath Abstract Syntax.

navigates from the root of a document (designated by the lead-
ing “/”) through the top-level “book” node to its “chapter” child
nodes and on to its child nodes named “section”. The result of the
evaluation of the entire expression is the set of all the “section”
nodes that can be reached in this manner. The situation becomes
more interesting when combined with XPath’s capability of search-
ing along “axes” other than “child”. For instance, one may use the
“preceding-sibling” axis for navigating backward through nodes of
the same parent, or the “ancestor” axis for navigating upward re-
cursively. Furthermore, at each step in the navigation the selected
nodes can be filtered using qualifiers: boolean expression between
brackets that can test the existence or absence of paths.

We consider a large XPath fragment covering all major features
of the XPath standard [6] except counting and data value joins.
Fig. 3 gives the syntax of XPath expressions. Fig.4 and Fig.5 give
an interpretation of XPath expressions as functions between sets of
focused trees.

5.1 XPath Embedding

We now explain how an XPath expression can be translated into an
equivalent formula inLµ that performs navigation in focused trees
in binary style.

Logical Interpretation of Axes The formal translations of navi-
gational primitives (namely XPath axes) are formally specified on
Fig. 6. The translation function noted “A→JaKχ” takes an XPath
axisa as input, and returns itsLµ translation, in terms of aLµ for-
mulaχ given as a parameter. This parameter represents a context
and allows to compose formulas, which is needed for translating
path composition.A→JaKχ holds for all nodes that can be accessed
through the axisa from some node verifyingχ.

For instance, the translated formulaA→JchildKχ is satisfied by
children of the contextχ. These nodes are composed of the first
child and the remaining children. From the first child, the context
must be reached immediately by going once upward via1. From the
remaining children, the context is reached by going upward (any
number of times) via2 and then finally once via1.

Logical Interpretation of Expressions Fig.7gives the translation
of XPath expressions intoLµ. The translation function “E→JeKχ”



SeJ·K· : LXPath→ 2F → 2F

SeJ/pKF
def
= SpJpKroot(F )

SeJpKF
def
= SpJpK{(σs[tl],c)∈F}

SeJe1 p e2KF
def
= SeJe1KF ∪ SeJe2KF

SeJe1 ∩ e2KF
def
= SeJe1KF ∩ SeJe2KF

SpJ·K· : Path→ 2F → 2F

SpJp1/p2KF
def
=

{
f ′ | f ′ ∈ SpJp2K(SpJp1KF )

}
SpJp[q]KF

def
= {f | f ∈ SpJpKF ∧ SqJqKf}

SpJa::σKF
def
= {f | f ∈ SaJaKF ∧ nm(f) = σ}

SpJa::∗KF
def
= {f | f ∈ SaJaKF }

SqJ·K· : Qualif → F → {true, false}

SqJq1 andq2Kf
def
= SqJq1Kf ∧ SqJq2Kf

SqJq1 or q2Kf
def
= SqJq1Kf ∨ SqJq2Kf

SqJnot qKf
def
= ¬ SqJqKf

SqJpKf
def
= SpJpK{f} 6= ∅

SaJ·K· : Axis→ 2F → 2F

SaJselfKF
def
= F

SaJchildKF
def
= fchild(F ) ∪ SaJfoll-siblingKfchild(F )

SaJfoll-siblingKF
def
= nsibling(F ) ∪ SaJfoll-siblingKnsibling(F )

SaJprec-siblingKF
def
= psibling(F ) ∪ SaJprec-siblingKpsibling(F )

SaJparentKF
def
= parent(F )

SaJdescendantKF
def
= SaJchildKF ∪ SaJdescendantK(SaJchildKF )

SaJdesc-or-selfKF
def
= F ∪ SaJdescendantKF

SaJancestorKF
def
= SaJparentKF ∪ SaJancestorK(SaJparentKF )

SaJanc-or-selfKF
def
= F ∪ SaJancestorKF

SaJfollowingKF
def
= SaJdesc-or-selfK(SaJfoll-siblingK(SaJanc-or-selfKF ))

SaJprecedingKF
def
= SaJdesc-or-selfK(SaJprec-siblingK(SaJanc-or-selfKF ))

Figure 4. Interpretation of XPath Expressions as Functions Be-
tween Sets of Focused Trees.

fchild(F )
def
= {f 〈1〉 | f ∈ F ∧ f 〈1〉 defined}

nsibling(F )
def
= {f 〈2〉 | f ∈ F ∧ f 〈2〉 defined}

psibling(F )
def
=

{
f

〈
2
〉
| f ∈ F ∧ f

〈
2
〉

defined
}

parent(F )
def
= {(σ◦[rev a(tl l, t :: tlr)], c)

| (t, (tl l, c[σ◦], tlr)) ∈ F}

rev a(ε, tlr)
def
= tlr

rev a(t :: tl l, tlr)
def
= rev a(tl l, t :: tlr)

root(F )
def
= {(σs[tl ], (tl ,Top, tl)) ∈ F}
∪ root(parent(F ))

Figure 5. Auxiliary Functions over Sets of Focused Trees.

A→J·K· : Axis→ Lµ → Lµ

A→JselfKχ
def
= χ

A→JchildKχ
def
= µZ.

〈
1
〉
χ ∨

〈
2
〉
Z

A→Jfoll-siblingKχ
def
= µZ.

〈
2
〉
χ ∨

〈
2
〉
Z

A→Jprec-siblingKχ
def
= µZ. 〈2〉χ ∨ 〈2〉Z

A→JparentKχ
def
= 〈1〉µZ.χ ∨ 〈2〉Z

A→JdescendantKχ
def
= µZ.

〈
1
〉
(χ ∨ Z) ∨

〈
2
〉
Z

A→Jdesc-or-selfKχ
def
= µZ.χ ∨ µY.

〈
1
〉
(Y ∨ Z) ∨

〈
2
〉
Y

A→JancestorKχ
def
= 〈1〉µZ.χ ∨ 〈1〉Z ∨ 〈2〉Z

A→Janc-or-selfKχ
def
= µZ.χ ∨ 〈1〉µY.Z ∨ 〈2〉Y

A→JfollowingKχ
def
= A→Jdesc-or-selfKη1

A→JprecedingKχ
def
= A→Jdesc-or-selfKη2

η1
def
= A→Jfoll-siblingKA→Janc-or-selfKχ

η2
def
= A→Jprec-siblingKA→Janc-or-selfKχ

Figure 6. Translation of XPath Axes.

takes an XPath expressione and aLµ formulaχ as input, and re-
turns the correspondingLµ translation. The translation of a relative
XPath expression marks the initial context withs. The translation
of an absolute XPath expression navigates to the root which is taken
as the initial context.

For example, Fig8 illustrates of the translation of the XPath ex-
pression “child::a[child::b]”. This expression selects all “a” child
nodes of a given context which have at least one “b” child. The
translatedLµ formula holds for “a” nodes which are selected by
the expression. The first part of the translated formula,ϕ, corre-
sponds to the step “child::a” which selects candidates “a” nodes.
The second part,ψ, navigates downward in the subtrees of these
candidate nodes to verify that they have at least one “b” child.

Note that without converse programs we would have been un-
able to differentiate selected nodes from nodes whose existence is
tested: we must state properties on both the ancestors and the de-
scendants of the selected node. Equipping theLµ logic with both
forward and converse programs is therefore crucial for supporting
XPath. Logics without converse programs may only be used for



E→J·K· : LXPath→ Lµ → Lµ

E→J/pKχ
def
= P→JpK((µZ.¬〈1〉>∨〈2〉Z)∧(µY.χ∧s∨〈1〉Y ∨〈2〉Y ))

E→JpKχ
def
= P→JpK(χ∧s)

E→Je1 p e2Kχ
def
= E→Je1Kχ ∨ E→Je2Kχ

E→Je1 ∩ e2Kχ
def
= E→Je1Kχ ∧ E→Je2Kχ

P→J·K· : Path→ Lµ → Lµ

P→Jp1/p2Kχ
def
= P→Jp2K(P→Jp1Kχ)

P→Jp[q]Kχ
def
= P→JpKχ ∧Q←JqK>

P→Ja::σKχ
def
= σ ∧A→JaKχ

P→Ja::∗Kχ
def
= A→JaKχ

Figure 7. Translation of Expressions and Paths.

Translated Query: child::a [child::b]

a ∧ (µX.
〈
1
〉
(χ ∧ s) ∨

〈
2
〉

X)︸ ︷︷ ︸
ϕ

∧ 〈1〉µY.b ∨ 〈2〉Y︸ ︷︷ ︸
ψ

χ

a ϕ

c

a

d

b

ϕ∧ψ

Figure 8. XPath Translation Example.

solving XPath emptiness but cannot be used for solving other deci-
sion problems such as containment efficiently.

XPath most essential constructp1/p2 translates into formula
composition inLµ, such that the resulting formula holds for all
nodes accessed throughp2 from those nodes accessed fromχ by
p1. The translation of the branching constructp[q] significantly
differs. The resulting formula must hold for all nodes that can be
accessed throughp and from whichq holds. To preserve semantics,
the translation ofp[q] stops the “selecting navigation” to those
nodes reached byp, then filters them depending on whetherq holds
or not. We express this by introducing a dual formal translation
function for XPath qualifiers, notedQ←JqKχ and defined in Fig.9,
that performs “filtering” instead of navigation. Specifically,P→J·K·
can be seen as the “navigational” translating function: the translated
formula holds for target nodes of the given path. On the opposite,
Q←J·K· can be seen as the “filtering” translating function: it states
the existence of a pathwithout moving to its result. The translated
formula Q←JqKχ (respectivelyP←JpKχ) holds for nodes from
which there exists a qualifierq (respectively a pathp) leading to
a node verifyingχ.

XPath translation is based on these two translating “modes”,
the first one being used for paths and the second one for qualifiers.
Whenever the “filtering” mode is entered, it will never be left.

Translations of paths inside qualifiers are also given on Fig.9.
They use the specific translations for axes inside qualifiers, based
on XPath symmetry:symmetric(a) denotes the symmetric XPath

Q←J·K· : Qualif → Lµ → Lµ

Q←Jq1 andq2Kχ
def
= Q←Jq1Kχ ∧Q←Jq2Kχ

Q←Jq1 or q2Kχ
def
= Q←Jq1Kχ ∨Q←Jq2Kχ

Q←Jnot qKχ
def
= ¬ Q←JqKχ

Q←JpKχ
def
= P←JpKχ

P←J·K· : Path→ Lµ → Lµ

P←Jp1/p2Kχ
def
= P←Jp1K(P←Jp2Kχ)

P←Jp[q]Kχ
def
= P←JpK(χ∧Q←JqK>)

P←Ja::σKχ
def
= A←JaK(χ∧σ)

P←Ja::∗Kχ
def
= A←JaKχ

A←J·K· : Axis→ Lµ → Lµ

A←JaKχ
def
= A→Jsymmetric(a)Kχ

Figure 9. Translation of Qualifiers.

axis corresponding to the axisa (for instancesymmetric(child) =
parent).

We may now state that our translation is correct, by relating the
interpretation of an XPath formula applied to some set of trees to
the interpretation of its translation, by stating that the translation of
a formula is cycle-free, and by giving a bound in the size of this
translation.

We restrict the sets of trees to which an XPath formula may
be applied to those that may be denoted by anLµ formula. This
restriction will be justified in Section5.2where we show that every
regular tree language may be translated to anLµ formula.

PROPOSITION5.1 (Translation Correctness).The following hold
for an XPath expressione and aLµ formulaϕ denoting a set of
focused trees, withψ = E→JeKϕ:

1. JψK∅ = SeJeKJϕK∅
2. ψ is cycle-free
3. the size ofψ is linear in the size ofe andϕ

5.2 Embedding Regular Tree Languages

Several formalisms exist for describing types of XML documents
(e.g. DTD, XML Schema, Relax NG). In this paper we embed
regular tree languages, which gather all of them [35] into Lµ. We
rely on a straightforward isomorphism between unranked regular
tree types and binary regular tree types [23]. Assuming a countably
infinite set of type variables ranged over byX, binary regular tree
type expressions are defined as follows:

LBT 3 T ::= tree type expression
∅ empty set

| ε leaf
| T1 p T2 union
| σ(X1, X2) label
| letXi.Ti in T binder



We refer the reader to [23] for the denotational semantics of regular
tree languages, and directly introduce their translation intoLµ:

J·K : LBT → Lµ
J∅K def

= σ ∧ ¬σ

JεK def
= σ ∧ ¬σ

JT1 p T2K
def
= JT1K ∨ JT2K

Jσ(X1, X2)K
def
= σ ∧ succ1(X1) ∧ succ2(X2)

JletXi.Ti in T K def
= µXi.JTiK in JT K

where we use the formulaσ ∧ ¬σ as “false”, and the function
succ·(·) takes care of setting the type frontier:

succα(X) =

{
¬ 〈α〉> ∨ 〈α〉X if nullable(X)
〈α〉X if not nullable(X)

according to the predicatenullable(·) which indicates whether a
type contains the empty tree.

Note that the translation of a regular tree type uses only down-
ward modalities since it describes the allowed subtrees at a given
context. No additional restriction is imposed on the context from
which the type definition starts. In particular, navigation is allowed
in the upward direction so that we can support type constraints for
which we have only partial knowledge in a given direction. How-
ever, when we know the position of the root, conditions similar to
those of absolute paths are added. This is particularly useful when
a regular type is used by an XPath expression that starts its naviga-
tion at the root (/p) since the path will not go above the root of the
type (by adding the restrictionµZ.¬

〈
1
〉
> ∨

〈
2
〉
Z).

On the other hand, if the type is compared with another type
(typically to check inclusion of the result of an XPath expression
in this type), then there is no restriction as to where the root of the
type is (our translation does not impose the chosen node to be at the
root). This is particularly useful since an XPath expression usually
returns a set of nodes deep in the tree which we may compare to
this partially defined type.

We are considering as future work a modification of the trans-
lation of types such that it imposes the context of a type to also
follow the regular tree language definition (stating for instance that
the parent of a given node may only be some specific other nodes).

6. Satisfiability-Testing Algorithm
In this section we present our algorithm, show that it is sound and
complete, and prove a time complexity boundary.

6.1 Preliminary Definitions

For ϕ = (µXi.ϕi in ψ) we define exp(ϕ)
def
= ψ{µXi.ϕi inXi/Xi}

which denotes the formulaψ in which every occurrence of aXi is
replaced by(µXi.ϕi in Xi).

We define theFisher-Ladner closurecl(ψ) of a formulaψ
as the set of all subformulas ofψ where fixpoint formulas are
additionally unwounded once. Specifically, we define the relation
→e⊆ Lµ × Lµ as the least relation that satisfies the following:

• ϕ1 ∧ ϕ2 →e ϕ1, ϕ1 ∧ ϕ2 →e ϕ2

• ϕ1 ∨ ϕ2 →e ϕ1, ϕ1 ∨ ϕ2 →e ϕ2

• 〈a〉ϕ′ →e ϕ
′

• µXi.ϕi in ψ →e exp(µXi.ϕi in ψ)

The closure cl(ψ) is the smallest setS that containsψ and closed
under the relation→e, i.e. if ϕ1 ∈ S andϕ1 →e ϕ2 thenϕ2 ∈ S.

>
.
∈ t =⇒ (∅, ∅)

ϕ ∈ Lean(ψ) ϕ ∈ t
ϕ

.
∈ t =⇒ ({ϕ}, ∅)

ϕ1

.
∈ t =⇒ (T1, F1) ϕ2

.
∈ t =⇒ (T2, F2)

ϕ1 ∧ ϕ2

.
∈ t =⇒ (T1 ∪ T2, F1 ∪ F2)

ϕ1

.
∈ t =⇒ (T1, F1)

ϕ1 ∨ ϕ2

.
∈ t =⇒ (T1, F1)

ϕ2

.
∈ t =⇒ (T2, F2)

ϕ1 ∨ ϕ2

.
∈ t =⇒ (T2, F2)

ϕ
.

/∈ t =⇒ (T, F )

¬ϕ
.
∈ t =⇒ (T, F )

exp(µXi.ϕi in ψ)
.
∈ t =⇒ (T, F )

µXi.ϕi in ψ
.
∈ t =⇒ (T, F )

ϕ ∈ Lean(ψ) ϕ 6∈ t

ϕ
.

/∈ t =⇒ (∅, {ϕ})

ϕ1

.

/∈ t =⇒ (T1, F1) ϕ2

.

/∈ t =⇒ (T2, F2)

ϕ1 ∨ ϕ2

.

/∈ t =⇒ (T1 ∪ T2, F1 ∪ F2)

ϕ1

.

/∈ t =⇒ (T1, F1)

ϕ1 ∧ ϕ2

.

/∈ t =⇒ (T1, F1)

ϕ2

.

/∈ t =⇒ (T2, F2)

ϕ1 ∧ ϕ2

.

/∈ t =⇒ (T2, F2)

ϕ
.
∈ t =⇒ (T, F )

¬ϕ
.

/∈ t =⇒ (T, F )

exp(µXi.ϕi in ψ)
.

/∈ t =⇒ (T, F )

µXi.ϕi in ψ
.

/∈ t =⇒ (T, F )

Figure 10. Truth assignment of a formula

We call Σ(ψ) the set of atomic propositions used inψ along
with an other name,σx, representing atomic propositions not oc-
curring inψ.

We note cl∗(ψ) = cl(ψ) ∪ {¬ϕ | ϕ ∈ cl(ψ)}. Every formula
ϕ ∈ cl∗(ψ) can be seen as a boolean combination of formulas of
a set called the Lean ofψ, inspired from [37]. We note this set
Lean(ψ) and define it as follows:

Lean(ψ) =
{
〈a〉> | a ∈ {1, 2, 1, 2}

}
∪ Σ(ψ)

∪ {s} ∪ {〈a〉ϕ | 〈a〉ϕ ∈ cl(ψ)}

A ψ-type(or simply a “type”) (Hintikka set in the temporal logic
literature) is a sett ⊆ Lean(ψ) such that:

• ∀ 〈a〉ϕ ∈ Lean(ψ), 〈a〉ϕ ∈ t ⇒ 〈a〉> ∈ t (modal consis-
tency);

•
〈
1
〉
> /∈ t ∨

〈
2
〉
> /∈ t (a tree node cannot be both a first child

and a second child);

• exactly one atomic propositionσ ∈ t (XML labeling); we use
the functionσ(t) to return the atomic proposition of a typet;

• s may belong tot.

We call Types(ψ) the set ofψ-types. For aψ-type t, thecomple-
mentof t is the set Lean(ψ) \ t.

A type determines a truth assignment of every formula in cl∗(ψ)
with the relation

.
∈ defined in Fig.10.

Note that such derivations are finite because the number of
nakedµXi.ϕi in ψ (that do not occur under modalities) strictly
decreases after each expansion.

We often writeϕ
.
∈ t if there are someT, F such thatϕ

.
∈

t =⇒ (T, F ). We say that a formulaϕ is true at a typet iff ϕ
.
∈ t.



We now relate a formula to the truth assignment of itsψ-types.

PROPOSITION6.1. If ϕ
.
∈ t =⇒ (T, F ), then we haveT ⊆ t,

F ⊆ Lean(ϕ) \ t, and
∧
ψ∈T ψ ∧

∧
ψ∈F ¬ψ impliesϕ (every

tree in the interpretation of the first formula is in the interpretation

of the second). Ifϕ
.

/∈ t =⇒ (T, F ), then we haveT ⊆ t,
F ⊆ Lean(ϕ) \ t, and

∧
ψ∈T ψ ∧

∧
ψ∈F ¬ψ implies¬ϕ.

We next define a compatibility relation between types that es-
tablishes what formula must hold in a type to be a witness to a
modal formula.

DEFINITION 6.2 (Compatibility relation).Two typest and t′ are
compatibleundera ∈ {1, 2}, written∆a(t, t

′), iff

∀ 〈a〉ϕ ∈ Lean(ψ), 〈a〉ϕ ∈ t⇔ ϕ
.
∈ t′

∀ 〈a〉ϕ ∈ Lean(ψ), 〈a〉ϕ ∈ t′ ⇔ ϕ
.
∈ t

6.2 The Algorithm

The algorithm works on sets of triples of the form(t, w1, w2)
wheret is a type, andw1 andw2 are sets of types which represent
all possible witnesses fort according to relations∆1(t, ·) and
∆2(t, ·).

The algorithm proceeds in a bottom-up approach, repeatedly
adding new triples until a satisfying model is found (i.e. a triple
whose first component is a type implying the formula), or until no
more triple can be added. Each iteration of the algorithm builds
types representing deeper trees (in the1 and 2 direction) with
pending backward modalities that will be fulfilled at later iterations.
Types with no backward modalities are satisfiable, and if such a
type implies the formula being tested, then it is satisfiable. The
main iteration is as follows:

X ← ∅
repeat
X ′ ← X
X ← Upd(X ′)
if FinalCheck(ψ,X) then

return “ψ is satisfiable”
until X = X ′

return “ψ is unsatisfiable”

whereX ⊆ Types(ψ)× 2Types(ψ)× 2Types(ψ) and the operations
Upd(·) andFinalCheck(·) are defined on Fig.11.

We noteXi the set of triples andT i the set of types afteri
iterations:T i =

{
type(x) | x ∈ Xi

}
. Note thatT i+1 is the set of

types for which at least one witness belongs toT i.

6.3 Correctness and Complexity

In this section we define the necessary notions to prove the correct-
ness of the satisfiability testing algorithm, and show that its time
complexity is2O(|Lean(ψ)|).

THEOREM 6.3 (Correctness).The algorithm decides satisfiability
ofLµ formulas over finite focused trees.

Termination Forψ ∈ Lµ, since cl(ψ) is a finite set, Lean(ψ) and
2Lean(ψ) are also finite. Furthermore,Upd(·) is monotonic and each
Xi is included in the finite set Types(ψ) × 2Types(ψ) × 2Types(ψ),
therefore the algorithm terminates. To finish the proof, it thus suf-
fices to prove soundness and completeness.

Preliminary Definitions for Soundness First, we introduce a no-
tion of partial satisfiability for a formula, where backward modal-
ities are only checked up to a given level. A formulaϕ is partially
satisfied iffJϕK0V 6= ∅ as defined in Fig.12.

J>KnV
def
= F JXKnV

def
= V (X)

Jϕ ∨ ψKnV
def
= JϕKnV ∪ JψKnV JpKnV

def
= {f | nm(f) = p}

Jϕ ∧ ψKnV
def
= JϕKnV ∩ JψKnV J¬pKnV

def
= {f | nm(f) 6= p}

J
〈
1
〉
ϕK0V

def
= F JsKnV

def
=

{
f | f = (σs[tl ], c)

}
J
〈
2
〉
ϕK0V

def
= F J¬sKnV

def
= {f | f = (σ[tl ], c)}

J
〈
1
〉
ϕKn>0
V

def
=

{
f 〈1〉 | f ∈ JϕKn−1

V ∧ f 〈1〉 defined
}

J
〈
2
〉
ϕKn>0
V

def
=

{
f 〈2〉 | f ∈ JϕKn−1

V ∧ f 〈2〉 defined
}

J〈1〉ϕKnV
def
=

{
f

〈
1
〉
| f ∈ JϕKn+1

V ∧ f
〈
1
〉

defined
}

J〈2〉ϕKnV
def
=

{
f

〈
2
〉
| f ∈ JϕKn+1

V ∧ f
〈
2
〉

defined
}

J¬ 〈a〉>KnV
def
= {f | f 〈a〉 undefined}

JµXi.ϕi in ψKnV
def
= let Ti =

(⋂ {
Ti ⊆ F | JϕiKnV [Ti/Xi]

⊆ Ti
})

i

in JψKn
V [Ti/Xi]

Figure 12. Partial satisfiability

For a typet, we noteϕc(t) its most constrained formula, where
atoms are taken from Lean(ψ). In the following,◦ stands fors if
s ∈ t, and for¬s otherwise.

ϕc(t) = σ(t) ∧
∧

σ∈Σ,σ/∈t

¬σ ∧ ◦ ∧
∧
〈a〉ϕ∈t

〈a〉ϕ ∧
∧
〈a〉ϕ/∈t

¬ 〈a〉ϕ

We now introduce a notion ofpaths, written ρ which are con-
catenations of modalities: the empty path is writtenε, and path con-
catenation is writtenρa.

Every path may be given adepth:

depth(ε)
def
= 0

depth(ρa)
def
= depth(ρ) + 1 if a ∈ {1, 2}

depth(ρa)
def
= depth(ρ)− 1 if a ∈ {1, 2}

A forward path is a path that only mentions forward modalities.
We define a tree of typesT as a tree whose nodes are types,

T (·) = t, with at most two children,T 〈1〉 andT 〈2〉. The navi-
gation in tree of types is trivially extended to forward paths. A tree
of types isconsistentiff for every forward pathρ and for every
child a of T 〈ρ〉, we haveT 〈ρ〉 (·) = t, T 〈ρa〉 (·) = t′ implies
〈a〉> ∈ t, 〈a〉> ∈ t′, and∆a(t, t

′).
Given a consistent tree of typesT , we now define a dependency

graph whose nodes are pairs of a forward pathρ and a formula in
t = T 〈ρ〉 (·) or the negation of a formula in the complement of
t. The directed edges of the graph are labeled with modalities con-
sistent with the tree. This graph corresponds to what the algorithm
ultimately builds, as every iteration discovers longer forward paths.
For every(ρ, ϕ) in the nodes we build the following edges:

• ϕ ∈ Σ(ψ) ∪ ¬Σ(ψ) ∪ {s,¬s, 〈a〉>,¬ 〈a〉>}: no edge

• ρ = ε andϕ = 〈a〉ϕ′ with a ∈ {1, 2}: no edge

• ρ = ρ′a andϕ = 〈a′〉ϕ′: let t = T 〈ρ〉 (·).
We first consider the case wherea′ ∈ {1, 2} and let t′ =
T 〈ρa′〉 (·). As T is consistent, we haveϕ′

.
∈ t′ hence there

areT, F such thatϕ′
.
∈ t′ =⇒ (T, F ) with T a subset oft′,

andF a subset of the complement oft′. For everyϕT ∈ T we
add an edgea′ to (ρa′, ϕT ), and for everyϕF ∈ F we add an
edgea′ to (ρa′,¬ϕF ).



Upd(X)
def
= X ∪ {(t, w1(t,X

◦), w2(t,X
◦)) | s /∈ t ⊆ Types(ψ) ∧ 〈1〉> ∈ t⇒ w1(t,X

◦) 6= ∅ ∧ 〈2〉> ∈ t⇒ w2(t,X
◦) 6= ∅}

∪
{

(t, w1(t,X
◦), w2(t,X

◦))s | s ∈ t ⊆ Types(ψ) ∧ 〈1〉> ∈ t⇒ w1(t,X
◦) 6= ∅ ∧ 〈2〉> ∈ t⇒ w2(t,X

◦) 6= ∅
}

∪
{

(t, w1(t,X
s), w2(t,X

◦))s | s /∈ t ⊆ Types(ψ) ∧ 〈1〉> ∈ t⇒ w1(t,X
s) 6= ∅ ∧ 〈2〉> ∈ t⇒ w2(t,X

◦) 6= ∅
}

∪
{

(t, w1(t,X
◦), w2(t,X

s))s | s /∈ t ⊆ Types(ψ) ∧ 〈1〉> ∈ t⇒ w1(t,X
◦) 6= ∅ ∧ 〈2〉> ∈ t⇒ w2(t,X

s) 6= ∅
}

wa(t,X)
def
= {type(x) | x ∈ X ∧ 〈a〉> ∈ type(x) ∧∆a(t, type(x))} Xs def

=
{
x ∈ X | x = ( , , )s

}
FinalCheck(ψ,X)

def
= ∃x ∈ Xs, dsat(x, ψ) ∧ ∀a ∈ {1, 2}, 〈a〉> /∈ type(x) X◦

def
= {x ∈ X | x = ( , , )}

dsat((t, w1, w2), ψ)
def
= ψ

.
∈ t ∨ ∃x′, dsat(x′, ψ) ∧ (x′ ∈ w1 ∨ x′ ∈ w2) type((t, w1, w2))

def
= t

Figure 11. Operations used by the Algorithm.

We now consider the case wherea′ ∈ {1, 2} and first show
that we havea′ = a. As T is consistent, we have〈a〉> in t.
Moreover, ast is a tree type, it must contain〈a′〉>. As a′ is a
backward modality, it must be equal toa as at most one may be
present. Hence we haveρ′aa′ = ρ′ and we lett′ = T 〈ρ′〉 (·).
By consistency, we haveϕ′

.
∈ t′, henceϕ′

.
∈ t′ =⇒ (T, F )

and we add edges as in the previous case: to(ρ′, ϕT ) and to
(ρ′,¬ϕF ).

• ρ = ρ′a and ϕ = ¬ 〈a′〉ϕ′: let t = T 〈ρ〉 (·). If 〈a′〉>
is not in t then no edge is added. Otherwise, we proceed as
in the previous case. For downward modalities, we lett′ =

T 〈ρa′〉 (·) and we computeϕ′
.

/∈ t′ =⇒ (T, F ), which we
know to hold by consistency. We then add edges to(ρa′, ϕT )
and to(ρa′,¬ϕF ) as before. For upward modalities, as we have
〈a′〉> in t, we must havea′ = a and we lett′ = T 〈ρ′〉 (·). We

computeϕ′
.

/∈ t′ =⇒ (T, F ) and we add the edges to(ρ′, ϕT )
and to(ρ′,¬ϕF ) as before.

LEMMA 6.4. The dependency graph of a consistent tree of types of
a cycle-free formula is cycle free.

LEMMA 6.5 (Soundness).LetT be the result set of the algorithm.
For any typet ∈ T and anyϕ such thatϕ

.
∈ t, thenJϕK0∅ 6= ∅.

Proof outline: The proof (detailed in [19] ) proceeds by induction
on the number of steps of the algorithm. For everyt in Tn and
every witness treeT rooted att built fromXn, we show thatT is
a consistent tree type and we build a focused treef that is rooted
(i.e. of the shape(σ◦[tl ], (ε,Top, tl ′))).

We then proceed to show thatf satisfiesϕc(t) at level0. To do
so, we use a further induction on the dependency tree. �

LEMMA 6.6 (Completeness).For a cycle-free closed formulaϕ ∈
Lµ, if JϕK∅ 6= ∅ then when the algorithm terminates with a set of
triplesX such thatFinalCheck(ϕ,X), there exists somex ∈ X
such thatϕ

.
∈ type(x).

Proof outline: As the formula is satisfiable, we consider a smallest
focused treef satisfying it. We then use Lemma4.2 to derive a
finite satisfaction relation ofϕ that containsf . We then rely on this
relation to build a run of the algorithm that produces a type with no
backward modality implying the formula. �

LEMMA 6.7 (Complexity).For a formulaψ ∈ Lµ the satisfia-
bility problem JψK∅ 6= ∅ is decidable in time2O(n) wheren =
|Lean(ψ)|.

7. Implementation Techniques
Our implementation relies on a symbolic representation of sets of
ψ-types using Binary Decision Diagrams (BDDs) [5].

First, we observe that the implementation can avoid keeping
track of every possible witnesses of eachψ-type. In fact, for a
formula ϕ, we can testJϕK∅ 6= ∅ by testing the satisfiability of
the (linear-size) “plunging” formulaψ = µX.ϕ ∨ 〈1〉X ∨ 〈2〉X
at the root of focused trees. That is, checkingJψK0∅ 6= ∅ while
ensuring there is no unfulfilled upward eventuality at top level0.
One advantage of proceeding this way is that the implementation
only need to deal with a current set ofψ-types at each step.

We now introduce a bit-vector representation ofψ-types. Types
are complete in the sense that either a subformula or its negation
must belong to a type. It is thus possible for a formulaϕ ∈ Lean(ψ)
to be represented using a single BDD variable. For Lean(ψ) =
{ϕ1, ..., ϕm}, we represent a subsett ⊆ Lean(ψ) by a vector
~t = 〈t1, ..., tm〉 ∈ {0, 1}m such thatϕi ∈ t iff ti = 1. A BDD
with m variables is then used to represent a set of such bit vectors.

We define some auxiliary predicates on a vector~t. For a program
a ∈ {1, 2}:

• isparenta(~t) is read “~t is a parent for programa” and is true iff
the bit for〈a〉> is true in~t

• ischilda(~t) is read “~t is a child for programa” and is true iff the
bit for 〈a〉> is true in~t

For a setT ⊆ 2Lean(ψ), we noteχT its corresponding character-
istic function. EncodingχTypes(ψ) is straightforward. The predicate
statusϕ(~t) is the equivalent of

.
∈ on the bit vector representation.

We now construct the BDD of the relation∆a for a ∈ {1, 2}. This
BDD relates all pairs(~x, ~y) that are consistent w.r.t the programa,
i.e., such that~y supports all of~x’s 〈a〉ϕ formulas, and vice-versa
~x supports all of~y’s 〈a〉ϕ formulas:

∆a(~x, ~y)
def
=

∧
1≤i≤m

 xi ↔ statusϕ(~y) if ϕi = 〈a〉ϕ
yi ↔ statusϕ(~x) if ϕi = 〈a〉ϕ
> otherwise

Fora ∈ {1, 2}, we define the set of witnessed vectors:

χWita(T )(~x)
def
= isparenta(~x)→ ∃~y [ h(~y) ∧∆a(~x, ~y) ]

whereh(~y) = χT (~y) ∧ ischilda(~y).



Then, the BDD of the fixpoint computation is initially set to the
false constant, and the main functionUpd(·) is implemented as:

χUpd(T )(~x)
def
= χT (~x) ∨

χTypes(ψ)(~x) ∧
∧

a∈{1,2}

χWita(T )(~x)


Finally, the solver is implemented as iterations over the sets

χUpd(T ) until a fixpoint is reached. The final satisfiability condition
consists in checking whetherψ is present in aψ-type of this
fixpoint with no unfulfilled upward eventuality.

We use two major techniques for further optimization. First,
BDD relational products (∃~y [ h(~y) ∧∆a(~x, ~y) ]) are computed
using conjunctive partitioning and early quantification [10]. Sec-
ond, we observed that choosing a good initial order of Lean(ψ)
formulas does significantly improve performance. Experience has
shown that the variable order determined by the breadth-first traver-
sal of the formulaψ to solve, which keeps sister subformulas in
close proximity, yields better results in practice.

8. Typing Applications and Experimental Results
For XPath expressionse1, ..., en, we can formulate several decision
problems in the presence of XML type expressionsT1, ..., Tn :

• XPath containment:E→Je1KJT1K ∧ ¬E→Je2KJT2K (if the for-
mula is unsatisfiable then all nodes selected bye1 under type
constraintT1 are selected bye2 under type constraintT2)

• XPath emptiness:E→Je1KJT1K

• XPath overlap:E→Je1KJT1K ∧ E→Je2KJT2K

• XPath coverage:E→Je1KJT1K ∧
∧

2≤i≤n ¬E
→JeiKJTiK

Two decision problems are of special interest for XML static
type checking:

• Static type checking of an annotated XPath query:
E→Je1KJT1K ∧ ¬JT2K (if the formula is unsatisfiable then all
nodes selected bye1 under type constraintT1 are included in
the typeT2.)

• XPath equivalence under type constraints:
E→Je1KJT1K∧¬E→Je2KJT2K and¬E→Je1KJT1K∧E→Je2KJT2K
(This test can be used to check that the nodes selected after a
modification of a typeT1 by T2 and an XPath expressione1 by
e2 are the same, typically when an input type changes and the
corresponding XPath query has to change as well.)

We carried out extensive tests1 [19] , and present here only a few
of them. The tests use XPath expressions shown on Fig.13 (where
“//” is used as a shorthand for “/desc-or-self::*/”) and XML types
shown on Table1. Table2 presents some decision problems and
corresponding performance results. Times reported in milliseconds
correspond to the actual running time of theLµ satisfiability solver
without the extra (negligible) time spent for parsing XPath and
translating intoLµ.

The first XPath containment instance was first formulated in
[32] as an example for which the proposed tree pattern homomor-
phism technique is incomplete. Thee8 example shows that the of-
ficial XHTML DTD does not syntactically prohibit the nesting of
anchors. For the XHTML case, we observe that the time needed
is more important, but it remains practically feasible, especially
for static analysis purposes where such operations are performed
at compile-time.

1 Experiments have been conducted with a JAVA implementation running
on a Pentium 4, 3 Ghz, with 512Mb of RAM with Windows XP.

e1 /a[.//b[c/*//d]/b[c//d]/b[c/d]]
e2 /a[.//b[c/*//d]/b[c/d]]

e3 a/b//c/foll-sibling::d/e
e4 a/b//d[prec-sibling::c]/e
e5 a/c/following::d/e
e6 a/b[//c]/following::d/e∩ a/d[preceding::c]/e

e7 *//switch[ancestor::head]//seq//audio[prec-sibling::video]

e8 descendant::a[ancestor::a]
e9 /descendant::*
e10 html/(headp body)
e11 html/head/descendant::*
e12 html/body/descendant::*

Figure 13. XPath Expressions Used in Experiments.

DTD Symbols Binary Type Variables
SMIL 1.0 19 11
XHTML 1.0 Strict 77 325

Table 1. Types Used in Experiments.

XPath Decision Problem XML Type Time (ms)
e1 ⊆ e2 ande2 6⊆ e1 none 353
e4 ⊆ e3 ande4 ⊆ e3 none 45
e6 ⊆ e5 ande5 6⊆ e6 none 41
e7 is satisfiable SMIL 1.0 157
e8 is satisfiable XHTML 1.0 2630

e9 ⊆ (e10 ∪ e11 ∪ e12) XHTML 1.0 2872

Table 2. Some Decision Problems and Corresponding Results.

9. Related Work
The XPath containment problem has attracted a lot of research
attention in the database community [32, 36, 38]. The focus was
given to the study of the impact of different XPath features on the
containment complexity (see [38] for an overview). Specifically,
[36] proves an EXPTIME upper-bound (in the presence of DTDs)
of queries containing the “child” and “descendant” axes, and union
of paths. The complexity of XPath satisfiability in the presence
of DTDs also is extensively studied in [3]. From these results,
we know that XPath containment with or without type constraints
ranges from EXPTIME to undecidable.

Most formalisms used in the context of XML are related to one
of the two logics used for unranked trees: first-order logic (FO),
and Monadic Second Order Logic (MSO). FO and relatives are
frequently used for query languages since they nicely capture their
navigational features [2]. For query languages, Computational Tree
Logic (CTL), which is equivalent to FO over tree structures has
been proposed [32, 30, 2]. In a attempt to reach more expressive
power, the work found in [1] proposes a variant of Propositional
Dynamic Logic (PDL) [14] with an EXPTIME complexity. MSO
is one of the most expressive decidable logic used when both
regular types and queries [2] are under consideration. Specifically,
the appropriate MSO variant which exactly captures regular tree
types is the weak monadic second-order logic of two successors
(WS2S) [40, 9]. WS2S satisfiability is known to be non-elementary.
A drawback of the WS2S decision procedure is that it requires the
full construction and complementation of tree automata.

Some temporal and fixpoint logics closely related to MSO have
been introduced and allow to avoid explicit automata construction.



The propositional modalµ-calculus introduced in [27] has been
shown to be as expressive as nondeterministic tree automata [11].
Since it is trivially closed under negation, it constitutes a good
alternative for studying MSO-related problems. Moreover, it has
been extended with converse programs in [42]. The best known
complexity for the resulting logic is obtained through reduction to
the emptiness problem of alternating tree automaton which is in
2O(n4·log n), wheren corresponds to the lenght of a formula [21].
Unfortunately the logic lacks the finite model property. [28], we
know that WS2S is exactly as expressive as the alternation-free
fragment (AFMC) of the propositional modalµ-calculus. Further-
more, the AFMC subsumes all early logics such as CTL [7] and
PDL [14] (see [2] for a complete survey on tree logics). In [31], the
author considers XPath equivalence under DTDs (local tree types)
for which satisfiability is shown to be in EXPTIME.

The goal of the research presented so far is limited to establish-
ing new theoretical properties and complexity bounds. Our research
differs in that we seek precise complexity bounds, efficient imple-
mentation techniques and concrete design that may be directly ap-
plied to the type checking of XPath queries under regular tree types.

In this line of research, some experimental results based on
WS2S, through the Mona tool [26], have recently been reported
for XPath containment [17] and even for query evaluation [25].
However, for static analysis purposes, the explosiveness of the
approach is very difficult to control due to the non-elementary
complexity. Closer to our contribution, the recent work found in
[39] provides a decision procedure for the AFMC with converse
whose time complexity is2O(n·log n). However, models of the logic
are Kripke structures (infinite graphs). Enforcing the finite tree
model property can be done at the syntactic level [39], and this has
been further developed in the XML setting in [18]. Nevertheless,
the drawback of this approach is that the AFMC decision procedure
requires expensive cycle-detection for rejecting infinite derivation
paths for least fixpoint formulas. The present work shows how this
can be avoided for finite trees. As a consequence, the resulting
performance is much more attractive. In an earlier work on XML
type checking, a logic for finite trees was presented [41], but the
logic is not closed under negation.

The work [34] presents an approximated technique that is able
to statically detect errors in XSLT stylesheets. Their approach
could certainly benefit from using our exact algorithm instead of
their conservative approximation. The XDuce [22], CDuce [4], and
XStatic [15] languages support pattern-matching through regular
expression types but not XPath. Although some recent work shows
how to translate XPath into Xtatic [16], the XPath fragment con-
sidered does not include reverse axes nor negation in qualifiers. A
survey work on existing research on statically type checking XML
transformations can be found in [33].

10. Conclusion
The main result of our paper is a sound and complete algorithm for
the satisfiability of decision problems involving regular tree types
and XPath queries with a tighter2O(n) complexity in the length of
a formula. Our approach is based on a sub-logic of the alternation-
free modalµ-calculus with converse for finite trees.

Our proof method reveals deep connections between this logic
and XPath decision problems. First, the translations of XML regu-
lar tree types and a large XPath fragment are cycle-free and linear
in the size of the corresponding formulas in the logic. Second, on
finite trees, since both operators are equivalent, the logic with a
single fixpoint operator is closed under negation. This allows to ad-
dress key XPath decision problems such as containment. The cur-
rent solver can also be used to support conditional XPath proposed
in [31].

Finally, there are a number of interesting directions for further
research that build on ideas developed here: extending XPath to
restricted data values comparisons that preserves this complexity,
for instance data values on a finite domain, and integrating related
work on counting [8] to our logic. We also plan on continuing to
improve the performance of our implementation.
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A. Cycle-free formulas
In the judgement∆ ‖ Γ `RI ϕ of Fig. 14, ∆ is an environment
binding some recursion variables to their formulas,Γ binds vari-
ables to modalities,R is a set of variables that have already been
expanded (see below), andI is a set of variables already checked.

ϕ = >, σ,¬σ,s, or¬s

∆ ‖ Γ `RI ϕ
∆ ‖ Γ `RI ϕ ∆ ‖ Γ `RI ψ

∆ ‖ Γ `RI ϕ ∨ ψ

∆ ‖ Γ `RI ϕ ∆ ‖ Γ `RI ψ
∆ ‖ Γ `RI ϕ ∧ ψ ∆ ‖ Γ `RI ¬ 〈a〉>

∆ ‖ (Γ C 〈a〉) `RI ϕ
∆ ‖ Γ `RI 〈a〉ϕ

∀Xj ∈ Xi.
(
(∆ +Xi : ϕi) ‖ (Γ +Xi : ) `R\Xi

I\Xi
ϕj

)
∆ ‖ Γ `R\Xi

I∪Xi
ψ

∆ ‖ Γ `RI µXi.ϕi in ψ

∀Xj ∈ Xi.
(
(∆ +Xi : ϕi) ‖ (Γ +Xi : ) `R\Xi

I\Xi
ϕj

)
∆ ‖ Γ `R\Xi

I∪Xi
ψ

∆ ‖ Γ `RI νXi.ϕi in ψ

NOREC
X ∈ R Γ(X) = 〈a〉

∆ ‖ Γ `RI X

REC

X 6∈ R ∆ ‖ Γ `R∪{X}I ∆(X)

∆ ‖ Γ `RI X

IGN
X ∈ I

∆ ‖ Γ `RI X

Figure 14. Cycle-free formulas

The environmentΓ used to derive the judgement consists of
bindings from variables (from enclosing fixpoint operators) to
modalities. A modality may be, no information is known about
the variable,〈a〉, the last modality taken〈a〉 was consistent, or⊥, a
cycle has been detected. A formula is not cycle free if an occurrence
of a variable under a fixpoint operator is either not under a modality
(in this caseΓ(X) = ), or is under a cycle (Γ(X) = ⊥). Cycle
detection uses an auxiliary operator to detect modality cycles:

Γ C 〈a〉 def
= {X : (Γ(X) C 〈a〉)}



where
·C · 〈1〉 〈2〉

〈
1
〉 〈

2
〉

〈1〉 〈2〉
〈
1
〉 〈

2
〉

〈1〉 〈1〉 〈2〉 ⊥
〈
2
〉

〈2〉 〈1〉 〈2〉
〈
1
〉
⊥〈

1
〉
⊥ 〈2〉

〈
1
〉 〈

2
〉〈

2
〉
〈1〉 ⊥

〈
1
〉 〈

2
〉

⊥ ⊥ ⊥ ⊥ ⊥
To check that mutually recursive formulas are cycle-free, we

proceed the following way. When a mutually recursive formula is
encountered, for instanceµXi.ϕi in ψ, we check every recursive
binding. Because of mutual recursion, we cannot check formulas
independently and we need to expand a variable the first time it’s
encountered (rule REC). However there is no need to expand it
a second time (rule NOREC). When checkingψ, as the formula
bound to the enclosing recursion have been checked to be cycle
free, there is no need to further check these variables (rule IGN). To
account for shadowing of variables, we make sure that newly bound
recursion variables are removed fromI andR when checking a
recursion. One may easily prove that if∆ ‖ Γ `RI ϕ holds, then
I ∩R = ∅.

This relation decides whether a formula is cycle free because,
if it is not, there must be a recursive binding ofXi to ϕi such that
ϕi{ϕi/Xi}{ϕj/Xj

} exhibits a modality cycle aboveXi, where the
Xj are recursion variables being defined (either in the recursion
definingXi or in an enclosing recursion definition).
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