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Introduction

Motivation
XML transformations: the basic processing of structured
documents (rendering, repurposing, content adaptation...)
XML processing code should be safe and efficient
Document transformations are based on W3C standard
languages (XSLT, XQuery,...) which use XPath

Ultimate goal

Static type-checking of XML processing code involving XPath

Approach

Static analysis of XML transformation languages
Find effective methods for analyzing XPath queries

P. Genevès, INRIA Comparing XML Path Expressions



Introduction

Motivation
XML transformations: the basic processing of structured
documents (rendering, repurposing, content adaptation...)
XML processing code should be safe and efficient
Document transformations are based on W3C standard
languages (XSLT, XQuery,...) which use XPath

Ultimate goal

Static type-checking of XML processing code involving XPath

Approach

Static analysis of XML transformation languages
Find effective methods for analyzing XPath queries

P. Genevès, INRIA Comparing XML Path Expressions



Introduction

Motivation
XML transformations: the basic processing of structured
documents (rendering, repurposing, content adaptation...)
XML processing code should be safe and efficient
Document transformations are based on W3C standard
languages (XSLT, XQuery,...) which use XPath

Ultimate goal

Static type-checking of XML processing code involving XPath

Approach

Static analysis of XML transformation languages
Find effective methods for analyzing XPath queries

P. Genevès, INRIA Comparing XML Path Expressions



Basic XPath Static Analysis Problems

Query Emptiness

Does a query always return an empty result when evaluated on a
set of XML documents?
Applications: error-detection and optimization of host languages
implementations

Query Containment

Is the result of q1 always included in the result of q2 when
evaluated on a set of XML documents?
Applications: type-checking; control-flow analysis of XSLT;
checking integrity constraints; checking access control in XML
security
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Other XPath Static Analysis Problems

Query Equivalence

Do q1 and q2 always return the same result when evaluated on a
set of XML documents?
Applications: reformulation and optimization of queries

Query Overlap

Do q1 and q2 select common nodes when evaluated on a set of
XML documents?
Application: error-detection and code verification

Query Coverage

Is the result of q1 always contained in the union of the results of
q2,q3, ...,qn?
Application: error-detection and code verification
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Research Challenges

Fact
Static analysis of the complete XPath language is undecidable

Open Questions

What is the largest XPath fragment with decidable static
analysis?
Which fragments can be effectively decided in practice?
Are there algorithms able to solve XPath decision problems in an
efficient way so that they can be used in practice?

Difficulties
Considered XPath operators and their combination
Properties on a possibly infinite quantification over a set of XML
documents
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XML Documents

Finite ordered trees of variable arity, labeled with a unique
symbol per node
Straightforward isomorphism between unranked and binary
trees:

1
2

3

0

0
1
2
3

XML documents seen as finite binary trees
Navigation can be expressed in binary style
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The Logical Approach

Method
Find an appropriate logic for reasoning on finite binary trees
Embed XPath queries in the logic: q −→ ϕq

Formulate the decision problem to solve
Example: containment test between q1 and q2

∀t ,∀x ∈ t , Jq1Kt
x ⊆ Jq2Kt

x

Validity of ϕq1 =⇒ ϕq2

Unsatisfiability of ϕq1 ∧ ¬ϕq2

Use the decision procedure of the logic: yes/no answer
satisfiable/unsatisfiable
if satisfiable, gives a satisfying XML document (counterexample for
the containment)

Critical Aspects

The logic must be expressive enough
The decision procedure must be effective in practice for XPath
formulas
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A Candidate Logic

AFMC (Alternation-Free Fragment of the Modal µ-Calculus)

[Kozen, 1983, Vardi, 1998, Tanabe et al., 2005]
Expressiveness:

AFMC ≡ MSO ≡ Finite Tree Automata (e.g. also captures Relax
NG, DTD, XML Schema)
Can be extended with converse programs: useful to capture XPath
semantics of selection

Models: Kripke structures (labeled graphs)
Complexity for decidability: exponential time (even when
extended with converse)
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Syntax of the Logic

Programs for navigating ordered binary trees: α ∈ {1,2,1,2}
with α = α:

1 2

Formulas:

ϕ,ψ ::= formula
> | ⊥ true (false)

| p | ¬p atomic proposition (negated)
| ϕ ∨ ψ disjunction
| ϕ ∧ ψ conjunction
| 〈α〉ϕ existential modality
| [α]ϕ universal modality
| X variable
| µX .ϕ least fixpoint
| νX .ϕ greatest fixpoint
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Semantics of the Logic: Examples

The interpretation of a formula is the set of its satisfying Kripke
structures (labeled graphs), for example:
a ∧ 〈1〉b ∧ 〈2〉 〈1〉d ∧ [2] c

a

b c

d

a ∧ µX .b ∨ 〈2〉X
shorthand for a ∧ (b ∨ 〈2〉b ∨ 〈2〉 〈2〉b ∨ 〈2〉 〈2〉 〈2〉b ∨ ...)

a

?

?

b
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Kripke Structures vs. XML Documents

Due to converse programs, the AFMC does not have the finite
tree model property:

models are Kripke structures (graphs) that may contain cyclic or
infinite paths
there exist formulas which are satisfiable on Kripke structures but
not on XML documents (finite binary trees)

Example: νX .a ∧ 〈2〉X

a

a

a

For XML, we must restrict the models to be finite trees
This can be done by syntactically rewriting the formula (see the
paper)
Satisfiability over graphs is restricted to satisfiability over finite
binary trees
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Considered XPath Fragment

Syntax
Expression e ::= /p | p | e1 p e2 | e1 ∩ e2
Path p ::= p1/p2 | p[q] | a::n
Qualifier q ::= q and q | q or q | not q | p
Axis a ::= child | descendant | self | parent

| ancestor | following | preceding
| descendant-or-self | ancestor-or-self
| preceding-sibling | following-sibling

NodeTest n ::= σ | ∗

self
ancestor

descendant

pr
ec

ed
ing

following

following-sibling

preceding-sibling

child

parent

Peculiarities
Multi-directional tree navigation
Node selection and path existence:

a/b: all “b” children of “a“ nodes
a[b]: all “a” nodes which have at least one child “b”

Almost full XPath (only counting and data values left)
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Translating XPath into AFMC

The complete XPath
fragment can be linearly
translated into AFMC
See the paper for formal
translations
Two classes of translating
functions:

P→J·K·: for selecting
nodes through navigation
P←J·K·: for stating path
existence
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Summary

Approach for solving XPath decision problems

XPath queries are linearly translated into AFMC
The decision problem (e.g. containment) is formulated in AFMC
and transformed
A Tableau-based method specialized for deciding AFMC
[Tanabe et al., 2005] is used
Time complexity: 2O(n·log(n))

Gives acceptable results in practice
(Demo?)
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Conclusion

Results
The largest XPath fragment treated so far for static analysis
A new complexity upper bound for XPath decision problems:
2O(n·log(n)) (the smallest and most precise)
The approach appears efficient in practice

More Results
The approach even scales to support DTDs, XSDs: see our
forthcoming TOIS’06 article [Genevès and Layaïda, 2006]
(longer version)
A restricted calculus for finite trees yields a still better 2O(n)

complexity: see http://wam.inrialpes.fr/software/xml-calculus/

Perspectives

Application to the static type-checking of XSLT, XQuery
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Semantics of Lfull
µ

A Kripke Structure K = 〈W ,R,L〉 is a Labeled Graph

W : set of nodes
nodes are labeled with atomic propositions (L : Prop → 2W )
edges are labeled with programs (R : Prog → 2W×W )

Lfull
µ Semantics (V : Var → 2W is a Valuation for Variables)

J·KK
V : Lfull

µ −→ 2W

J>KK
V = W

J⊥KK
V = ∅

JpKK
V = L(p)

JXKK
V = V (X)

J¬ϕKK
V = W \ JϕKK

V

Jϕ1 ∨ ϕ2KK
V = Jϕ1KK

V ∪ Jϕ2KK
V

Jϕ1 ∧ ϕ2KK
V = Jϕ1KK

V ∩ Jϕ2KK
V

J[α] ϕKK
V = {w : ∀w′(w, w′) ∈ R(α) ⇒ w′ ∈ JϕKK

V }
J〈α〉ϕKK

V = {w : ∃w′(w, w′) ∈ R(α) ∧ w′ ∈ JϕKK
V }

JµX.ϕKK
V =

T
{W ′ ⊆ W : JϕKK

V [X/W ′ ] ⊆ W ′}

JνX.ϕKK
V =

S
{W ′ ⊆ W : JϕKK

V [X/W ′ ] ⊇ W ′}
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Enforcing the Finite Tree Model Property

The property can be enforced at the AFMC formula level:
Trees have at most one node per program: 〈α〉ϕ 〈α〉> ∧ [α] ϕ
Koenig’s lemma is used for ensuring finiteness

The formula µX . [1] X ∧ [2] X
is vacuously satisfied at the leaves
and only at the top of finite branches

The checked formula becomes ϕrewritten ∧ µX . [1] X ∧ [2] X
Satisfiability over Kripke structures is reduced to satisfiability
over finite binary trees
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