
XQTC: A Static Type-Checker for XQuery

Using Backward Type Inference

Pierre Genevès
CNRS˚

pierre.geneves@inria.fr

Nabil Layaïda
INRIA

nabil.layaida@inria.fr

Christine Vanoirbeek
EPFL

christine.vanoirbeek@epfl.ch

ABSTRACT
We present a novel technique and a tool for static type-
checking of XQuery programs. The tool looks for errors in
the program by jointly analyzing the source code of the pro-
gram, input and output schemas that respectively describe
the sets of documents admissible as input and as output of
the program. The crux and the novelty of our results reside
in the joint use of backward type inference and a two-way
logic to represent inferred tree type portions. This allowed
us to design and implement a type-checker for XQuery which
is more precise and supports a larger XQuery fragment com-
pared to the approaches previously proposed in the litera-
ture; in particular compared to the only few actually im-
plemented static type-checkers such as the one in Galax [6].
The whole system uses compilers and a satisfiability solver
for deciding containment for two-way regular tree expres-
sions. Our tool takes an XQuery program and two schemas
Sin and Sout as input. If the program is found incorrect, then
it automatically generates a counter-example valid w.r.t. Sin

and such that the program produces an invalid output w.r.t
Sout. This counter-example can be used by the programmer
to fix the program.

1. INTRODUCTION
One of the most essential tasks in web engineering con-

sists in extracting and then transforming data for generating
output (for display or for further processing). Since the in-
ception of XML, dedicated programming languages such as
XSLT and XQuery were designed specifically to deal with
such transformations. Several research papers have stud-
ied the properties of these languages in order to better un-
derstand the difficulty they introduce and to master their
inherent complexity. In particular, the problem of finding
errors statically is of primary importance. Errors can be
easily introduced because transformations involve complex
information extraction via powerful query languages such

˚This work was partly done during a visit at EPFL.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

as XPath combined with imperative style statements (the
so-called FLWOR expressions) containing instructions such
as conditionals, loops, etc. combined with data producing
instructions. Furthermore, data given as input or expected
as output may additionally be constrained by some type
(schema). This makes errors even harder to detect since
types are specified independently and provided externally
to the program. This led W3C, the standard body in charge
of defining the XQuery language [3], to include a type sys-
tem in the specification [5]. This type system allows type
information to be effectively propagated to corresponding
instructions in the program with the aim of detecting errors
at compile time. The ultimate benefit of such analysis is to
avoid unexpected runtime errors by proving statically that
the program is correct for all input documents. This has
performance implications since programs proved correct do
not need to validate their output dynamically. The process
of detecting errors at compile-time, known as static type
checking, typically involves two main operations: type in-
ference and type containment test. The containment test
consists in checking that the program produces an XML out-
put which is consistent with the expected output type when
applied to a document which is valid with respect to the in-
put type. This is done by comparing the inferred type with
the expected type. Effective algorithms for testing contain-
ment between types have been developed in the literature
[11]. They are typically based on tree automata contain-
ment, and they proved effective in practice. Type inference
is often tricky for expressive languages and constitutes the
central problem in type checking transformations.

Forward Type Inference and its Limitations
The vast majority of works in the literature perform forward
type inference. Forward type inference consists in calculat-
ing the type describing the actual program output, based on
the analysis of the program and the input type. This analy-
sis consists in applying typing rules repeatedly to each pro-
gram statement and combining the results so that the anal-
ysis of the entire program yields a single and global inferred
output type. This approach is intuitive since the program
produces its output in a top-down fashion, and grammars
also describe constraints in a top-down forward-only fashion
with respect to the parent-child relationship. However, this
approach has some fundamental and intrinsic limitations.
Notably, one revealing limitation is the lack of support for
backward XPath axes. This is a fundamental limitation be-
cause the typical forward inference process navigates in the
input tree grammar, using child or descendant axes in order

to infer an output type. This navigation in a type is pos-
sible (and relatively easy) since tree grammars descriptions
are forward-only. However, navigating backward in a tree
grammar is very difficult to achieve and to model because
there is no guarantee that the target nodes correspond to
non-terminals of the (forward-only) grammar. This is why
forward type inference is intrinsically tied to forward XPath
axes.

Lack of support of backward XPath axes.
Backward XPath axes such as parent or ancestor are

commonly used in XQuery programs found in practice. Even
more remarkably, frequent patterns such as

child::p[position()=1]

(used to pick the first element labeled “p” in a sequence)
happen to be syntactic sugars for expressions involving back-
ward axes. For example, the above pattern is a shorthand
for:

child::p[not(preceding-sibling::p)]

More generally, this lack of support is unfortunate since
one of the main arguments in favor of using languages such
as XQuery (or XSLT1) concerns their ability to rely on the
full power of XPath, which constitutes the essential core
around which those languages are built.

Concretely, current type systems abstract over backward
axes by inferring the type“any”(no constraint at all) as soon
as a backward axis such as parent or preceding-sibling

is found in the program. This gross approximation leads to
unsound type-checkers in the context of forward type infer-
ence. This is because the inferred type is much less con-
strained than it would need to be. Therefore, the final con-
tainment check between the inferred type and the expected
type will more likely fail. An important consequence is that
type-checkers based on this approach will report many false
errors for correct programs. Reporting false negatives is
problematic because of the useless time spent in debugging
a correct program.

Backward Type Inference and its Advantages
In this paper we propose another, fundamentally different
approach based on backward type inference. Backward type
inference consists in inferring the input type modeling the
set of admissible input documents so that the program gen-
erates a valid output. For this purpose, the analysis uses the
program and an expected type as output. Once the inferred
input type is obtained, a containment check is performed to
test whether this inferred type is included in the input type
for documents actually given as input to the program. We
claim that this approach offers several decisive advantages
that we briefly review below.

Inferring exact constraints for the for loop.
One of the main advantages concerns the typing of a prob-

lematic XQuery statement: the “for $v in e1 return e2”
loop. In the context of forward type inference, typing pre-
cisely the for loop amounts to inferring information on how
many times the return part e2 will be executed. The W3C
type system, designed to have a polynomial complexity, in-
fers an approximate type.

1XSLT can be compiled into XQuery [7].

For example, consider for $v in $db desc::n return $v
where the input type and the expected output type are both
b, c, b˚. The W3C type inference yields pb | cq˚. As high-
lighted by Colazzo and Sartiani [4], this is a gross approx-
imation which is obviously not contained in b, c, b˚. The
type-checker will thus raise an error while the program is
perfectly correct. Colazzo and Sartiani go further and pro-
pose another type-system, designed to be more precise (for
an exponential complexity). Basically, they perform a case
analysis on e1 expression in order to infer some more precise
information on how many times the return clause e2 will be
executed. In the same manner, we could recursively perform
more sub-decomposition in order to generate even more pre-
cise information (at the cost of an even greater complexity).
At some point, one has to choose a trade-off between com-
plexity and precision (necessarily approximate).

Backward type inference brings a radically different per-
spective to solve this problem. It allows to completely over-
come this difficulty by reading the output type and basically
copying selected portions of the output type to the inferred
input type. A major advantage of looking at the for loop
the other way around is that it permits to completely avoid
approximation. Using backward type inference, we can type
the for loop in an exact manner without any additional cost.
For the above example, b, c, b˚ is directly (and linearly) in-
ferred as input.

Supporting backward navigation.
Another decisive advantage of our approach is that we

can infer all structural constraints induced by backward and
recursive navigation, and transfer them precisely in the in-
ferred input type. This is a crucial part of our contribution,
further explained in Sections 3.3 and 3.2.

Sound type-checkers even with approximation.
In both forward and backward type inferences, obviously

at some point, one has to choose a trade-off between preci-
sion and complexity. However, this choice has a fundamen-
tally different price in each technique. Backward type infer-
ence offers a decisive advantage here: an approximation in
the inference process will always preserve containment and
therefore soundness, unlike in the forward type inference
approach. Approximations in the forward type inference in-
troduce false negatives (as in the example above). The less
precise is the inferred output type, the greater is the num-
ber of false negatives reported. In contrast, approximation
in the backward type inference case lead to less errors de-
tected but all of those reported will be real ones. Therefore,
we believe that performance/precision trade-offs are much
more relevant in the backward type inference.

Contribution
The contribution of our paper is threefold:

‚ we propose the joint use of backward type inference
and a two-way logic as the best technique for the static
type-checking of XQuery;

‚ we present the first algorithm and tool that implement
this approach;

‚ we obtain more precision in type-checking than in pre-
vious approaches and we support a larger fragment of

XQuery (notably we are the first to provide the sup-
port of backward XPath axes);

The crux of our results relies on the use of a two-way logic
to represent inferred tree type portions during the process of
backward type inference. This logic provides a succinct no-
tation for regular tree types containing constraints expressed
in both upward and downward directions.

2. PROGRAMMING WITH XQUERY
Consider the following XQuery sample program:

1. <Products>
2. { for $cd in doc(’catalog.xml’)/descendant::CD
3. return <CompactDisc>
4. {$cd/ancestor::Product/ProductNo}
5. {$cd/child::*}
6. </CompactDisc> }
7. </Products>

This program operates on an instance of a catalog of prod-
ucts whose type is defined by the XML schema given in Fig-
ure 1. This type corresponds to a set of products containing
Book and CD elements. The program aims at generating an
XML data flow, corresponding to a catalog of products con-
taining only CompactDisc information. The program output
is expected to be valid against the target XML schema given
in Figure 2. At first sight, the program seems correct. First
it traverses all CD in the input document ranged over $cd

(line 2). For each of them, it extracts its ProductNo infor-
mation using a backward navigation to the Product element
(line 4). However, a careful analysis shows that this simple
example contains two errors: i) it generates an unexpected
element (Sleeve) and ii) the order of elements do not con-
form to the targeted schema. The goal of the present paper
is to detect this kind of errors automatically.

Figure 1: Input Type for “catalog.xml”.

2.1 XQuery Programs
The XQuery fragment we consider in this paper is given

by the abstract syntax shown in Figure 3, where axis P
tchild, desc, parent, anc, psibl, nsiblu. This fragment is
equipped with the main control statements (for loops, con-
ditionals, let binders) as well as backward, forward and
recursive navigation performed by XPath expressions.

We distinguish variables ($v) bound by for loops from
variables ($v) bound by let expressions. The former are
bound to non-empty trees, whereas the latter are bound to
arbitrary (and possibly empty) forests.

Figure 2: Expected Output Type.

e ::“
<σ>teu</σ>

| ε
| e, e
| for $v in e return e
| let $v := e return e
| if cond then e else e
| $v axis::n
| $var
| root()

cond ::“
cond _ cond | cond ^ cond | cond

| emptyp$varq | $var “ $var
$var ::“

$v
| $v

Figure 3: Core XQuery Fragment.

2.2 XQuery Types
As a model for XQuery types, we consider the class of

regular tree languages that capture most of the DTDs, XML
Schemas, and Relax NG schemas found in practice, with the
additional benefit that this class is closed under set-theoretic
operations. Furthermore, operations such as containment
are decidable.

The usual grammar for XQuery types which is typically
considered in the literature is given in Figure 4. This gram-
mar actually defines context-free grammars (for which con-
tainment is known to be undecidable). Some additional con-
straints must be applied on this grammar for it to define
regular tree grammars (the typical additional restriction is
that every occurrence of a recursive variable must either be
guarded or must occur in tail). Furthermore, this gram-
mar contains syntactic sugar (i.e. constructions that can be
expressed in terms of others, such as t? “ t | ()).

In the present paper, we consider regular tree types from
another slightly different (yet equivalent) perspective. We
consider the abstract syntax over binary trees, shown in
Figure 5. Considering regular tree types through this ab-
stract syntax offers three advantages: first, this grammar
already incorporates intrinsically the aforementioned restric-
tion so that it exactly defines regular tree grammars (there
is no need for further restriction). Second, this grammar
uses fewer constructions which reduces case analyses and in
particular the number of inference rules presented in Sec-
tion 3.3. Third, it makes explicit, through a let binder, re-
cursion which may occur in types. Finally, those advantages
come at no cost since unranked trees can be modeled as bi-

nary trees without loss of generality, owing to a bijective
mapping between unranked and binary trees [9].

In the rest of the paper, we rely on the widely known
“first-child” and “next-sibling” metaphor [9] for navigating
unranked trees, and as a mean to represent them in a binary
fashion. For example, the type of all forests is represented
as follows: let xany “ element ˚ {xany, xany} | () in xany

u ::“ unit type
element n {t} element

n ::“ name test
σ label

| ˚ wildcard
t ::“ type

u unit type
| () empty sequence
| t, t sequence
| t | t choice
| t? optional
| t` one or more
| t˚ zero or more
| x type reference

Figure 4: XQuery Types (with syntactic sugar).

n ::“ name test
σ label

| ˚ wildcard
t ::“ type

element n {x, x} element with type references
| () empty sequence
| t | t choice
| let x “ t in t recursive type

Figure 5: Types (desugarized and binarized).

3. BACKWARD TYPE INFERENCE

3.1 Main Principles
Formally, our type-checker takes as input:

‚ a given program e written in the XQuery fragment
described in Figure 3;

‚ a type Sin for documents actually given as input to e;

‚ a type Sout for documents expected as output of e.

Sin and Sout are first compiled into their core representa-
tions tin and tout written using the grammar given in Fig-
ure 5. The type-checker then applies the inference process
to e and tout as described in Section 3.3. This process yields
an inferred input type tinf. This type represents the set of
all documents admissible as input to e, or in other terms,
the set of all documents t such that eptq is a valid document
with respect to tout. We finally check whether:

tin Ď tinf (1)

Technically, (1) is checked using the satisfiability-solver in-
troduced in [9]. If (1) holds then no error is reported. If (1)
does not hold then we generate a counter-example tree illus-
trating why the program is found incorrect. The counter-
example is a sample input document for which e will output
a document which is invalid with respect to tout.

3.2 Logical Representation of Inferred Types
The type which is inferred by our process is represented

using logical formulas written with the logic of [9]. One
crucial advantage of this representation is that it allows ex-
pressing properties over both ancestors and descendants of a
given node. This is necessary to support XPath steps other
than child and descendant found in XQuery programs but
traditionally ignored in the literature [4]. Other advantages
of this representation include the fact that it is expressive
enough to support all XQuery types, it is succinct (types
are represented as formulas of linear size compared to their
regular expression syntax), and the satisfiability problem for
a logical formula of size n can be efficiently decided with an
optimal 2Opnq worst-case time complexity bound with the
solver of [9].

The syntax of the logic in which the inferred type is ex-
pressed is defined as follows:

ϕ,ψ ::“ formula
J true

| K false
| p | p atomic prop. (negated)
| X variable
| ϕ_ ψ disjunction
| ϕ^ ψ conjunction
| 〈a〉ϕ | 〈a〉J existential (negated)
| µX.ϕ (least) fixpoint

where a P t1, 2, 1, 2u are programs. Atomic propositions p
correspond to labels for tree nodes.

Intuitively, the logic allows one to formulate regular prop-
erties on trees: the programs “1” and “2” are respectively
used to access the first child node and the next sibling node
in an unranked tree. For instance, the formula a ^ 〈1〉 pb ^
〈2〉 cq is satisfied at the root of the tree denoted by the term
apb, cq. The logic also features converse programs 1 and
2 that respectively navigate in the opposite direction com-
pared to 1 and 2.

The logic allows expressing recursion through the fixpoint
binder. The recursive formula 〈1〉 pµX.a_ 〈1〉X _ 〈2〉Xq
states the existence of some node labelled with “a” at an
arbitrary depth in the subtree. The meaning of the recur-
sive formula µX.b _

〈
2
〉
X is that either the current node

is labeled b or some previous sibling of the current node is
labeled b.

The interpretation of a logical formula is the set of fi-
nite trees such that the formula is satisfied at some tree
node. From this perspective, a logical formula can be seen
as an alternative representation of a finite tree automaton,
or, equivalently a type (XML Schema). The semantics of
this logic is intuitively explained through examples in [8]
and formally defined in [9].

3.3 The Inference Process
The inference process is formalized by inference rules that

cover all possible cases of instructions and expected output
types. Specifically, we write an inference rule of the form:

rule-name
H1 H2 ... Hi

t ê e, tout

This rule means that, for the XQuery instruction e and for
the expected output type tout, the input type t is inferred,
provided hypothesesH1, H2, ... Hi are satisfied. t represents
a constraint that the input of e must satisfy in order for e

to produce an output which satisfies the constraints given
by tout. The above rule is named ”rule-name”.

The inference process is triggered by the application of
the rule that applies to the root of the parse tree of the
program. The XQuery program is decomposed in terms of
subexpressions. The rule that applies at top level recursively
calls rules for its sub-expressions. This decomposition of the
program expression guides the traversal of the output type.
Rule applications produce portions of the inferred type that
are assembled in order to compose the final inferred type.
Technically, portions are assembled when popping the stack
of recursive calls of sub-rules. At the end of the inference
process, we obtain a closed logical formula.

3.4 Auxiliary Definitions
We now introduce some auxiliary definitions used in the

inference rules.
For two node tests n and n 1 we define the predicate:

matchpn,n 1q
def
“ pn “ ˚ _ n 1 “ ˚ _ n “ n 1q. For a given

nodetest n the function toFpnq computes a corresponding

logical formula as follows: toFpσq
def
“ σ and toFp˚q

def
“ J. We

also define ntoFpn,n 1q
def
“ toFpnq ^ toFpn 1q.

We need some notations in order to deal with types. First,
we introduce xε as referring to the empty type: let xε “
() in xε. The function θpxq denotes the type bound to the
variable x. For a given variable x, the function fpxq return
the logical translation of θpxq, as follows:

fpxq “ f 1pθpxqq

f 1pelement n {x, x}q “ toFpnq ^ nextp1, x1q ^ nextp2, x2q

f 1p()q “ K

f 1pt1 | t2q “ f 1pt1q _ f
1pt2q

f 1plet x “ t1 in t2q “ f 1recpt2q

In the last definition, the function f 1recpt2q does the same
as f 1pt2q except that it replaces all occurrences of x at top
level in t2 with µX.f 1recpt1q where X is a fresh variable, and
the other (deeper) occurrences of x in t2 with X.

We define a function particularly useful for describing the
frontier of a type:

nextpk, xq “ nextpk, θpxqq

nextpk, tq “

$

&

%

 〈k〉J if t “ ()
 〈k〉J_ 〈k〉 f 1ptq if t ‰ ()^ nullableptq
〈k〉 f 1ptq if nullableptq

The predicate somewherepϕq is defined as:

µX. pϕroot ^ µY.ϕ_ 〈1〉Y _ 〈2〉Y q _
〈
1
〉
X _

〈
2
〉
X

We introduce notations for performing substitutions in
formulas, instructions, and also in types. The notation ϕ

“

ψ
{ψ1

‰

denotes the formula ϕ in which each occurrence of ψ is re-

placed by ψ1. e1

”

$v
{e2

ı

denotes the instruction e1 in which

all occurrences of $v are replaced by e2. The notation t
”

ÝÑx
{x1

ı

denotes the type expression t in which all (sibling) occur-
rences of x are replaced by x1, as follows:

pelement n {x1, x2}q
”

ÝÑx{x1

ı

“

"

element n {x1, x1} if x2 “ x
element n {x1, x2} otherwise

()
”

ÝÑx{x1

ı

“ ()

pt1 | t2q
”

ÝÑx{x1

ı

“ t1

”

ÝÑx{x1

ı

| t2

”

ÝÑx{x1

ı

plet x1 “ t1 in t2q
”

ÝÑx{x1

ı

“ let x1 “ t1

”

ÝÑx{x1

ı

in t2

”

ÝÑx{x1

ı

We define the widely used predicate nullableptq that indi-
cates whether the empty tree may belong to the language
associated with some type t:

nullablepelement n {x, x}q “ false

nullablep()q “ true

nullablept1 | t2q “ nullablept1q _ nullablept2q

nullableplet x “ t1 in t2q “ nullablept2q

The function ctoFpcondq returns the logical translation of
the condition cond , computed as follows:

ctoFpcond1 _ cond2q “ ctoFpcond1q _ ctoFpcond2q

ctoFpcond1 ^ cond2q “ ctoFpcond1q ^ ctoFpcond2q

ctoFp condq “ ctoFpcondq

ctoFpemptyp$varqq “ p$varq

ctoFp$v “ $varq “ J

while hasEqpcondq simply tests whether the condition cond
contains an equality test:

hasEqpcond1 _ cond2q “ hasEqpcond1q _ hasEqpcond2q

hasEqpcond1 ^ cond2q “ hasEqpcond1q _ hasEqpcond2q

hasEqp condq “ hasEqpcondq

hasEqpemptyp$varqq “ false

hasEqp$var “ $varq “ true

Finally we define the predicate nilablepeq which is true
whenever instruction e might not produce anything as out-
put. This predicate is analogous in spirit to nullableptq but
for instructions.

nilablep<σ>teu</σ>q “ false

nilablepεq “ true

nilablepe1, e2q “ nilablepe1q ^ nilablepe2q

nilablepfor $v in e1 return e2q “ nilablepe1q _ nilablepeq

nilableplet $v := e1 return e2q “ nilablepe1q

nilablepif cond then e1 else e2q “ nilablepe1q _ nilablepe2q

nilablep$v axis::nq “ true

nilablep$varq “ $var

nilableproot()q “ false

where e
def
“ e2

”

$v
{e1

ı

and e 1
def
“ e2

”

$v
{e1

ı

.

The predicate isChildOrNsiblStarp$vq checks whether
the let variable $v is bound to $v 1 nsibl::˚ or $v 1 child::˚
for some for variable $v 1.

3.5 Inference Rules
For each case of instruction e, and each case of expected

output type tout, we define a rule that infers a logical for-
mula ϕin that represents the set of acceptable input to e so
that e generates something valid with respect to tout. The
purpose of the inferred ϕin is to represent all admissible in-
puts to e yet being the most constrained as possible. The
more constrained ϕin is, the more precise the type-checking
algorithm will be.

One rule (or group of rules) is associated with each pos-
sible construct of the output type which can be: choice,
recursion, empty sequence or element type (as defined by
the grammar shown in Figure 5).

3.5.1 Choice and Recursion
The easiest constructs to deal with are choice types and re-

cursive types, respectively treated by the rules expr-union
and expr-rec in Figure 6. expr-union can be interpreted
as follows: for e to generate something valid w.r.t. pt1 | t2q,
e can either generate something valid w.r.t t1 or something
valid w.r.t t2. The constraint inferred for the input simply
requires that at least one of those two situations is satis-
fied, which is naturally formalized as a logical disjunction.
The rule expr-rec simply propagates the analysis to the
returned part of the let construct, provided that the type
bound to the variable can be accessed using θpxq.

expr-union
tl ê e, t1 tr ê e, t2

tl _ tr ê e, pt1 | t2q

expr-rec
t ê e, t2

t ê e, let x “ t1 in t2

Figure 6: Rules for choice and recursive types.

3.5.2 Empty Sequence
The case of the empty sequence as output type is treated

by rules shown in Figure 7. One rule is given for each instruc-
tion as the inferred constraint depends on the nature of the
instruction. For example, elem-empty infers the formula
K (or, in other terms, the empty type) because the gen-
eration of an element cannot produce an empty sequence.
On the opposite, empty-empty infers the formula J (the
type of any tree, or in other terms, no particular type con-
straint), since the empty instruction never generates any-
thing, which matches the empty sequence expected as out-
put. The rule child-empty handles the case where the con-
struct “$v child::n” is supposed to generate an empty se-
quence: it infers the constraint that $v must not have any
child matching n. Rules for other steps follow the same
spirit. The rule for-empty infers a disjunction which cor-
responds to the following situations: (i) e1 does not produce
any output (in which case e2 does not matter since it is not
executed), or (ii) e1 produces a non-empty output (which
implies that e2 is executed at least once) but e2 does not
produce any output. This situation corresponds to the sec-
ond part of the disjunction, in which each occurrence of $v
in e2 is replaced by t which denotes the constraint over the
input such that the evaluation of e1 is non-empty. This con-

straint is computed by a call t
in
ÐÝ e1 which uses the set

of inference rules shown on Figure 8. This set of rules is
specifically designed for the analysis of in clauses found in
for loops and let instructions. These particular rules only
take an instruction as parameter (no output type). Consider
for instance the following statement:

for $v in $r child::a return $v child::b

in the presence of the empty sequence () expected as out-
put type. For this example, the application of for-empty
triggers child-empty for e1 “ $r child::a resulting in a
formula t1 expressing the fact that $r has no children. The
rule in-child is also triggered for e1 resulting in a formula
t that characterizes $v as a child of $r . In addition, the
rule child-empty is triggered for e2 “ $v child::b result-
ing in a formula t2 that forbids the existence of “b” labeled
nodes as children of $v . Finally, the global inferred formula

t1 _ t2
”

$v
{t

ı

is composed from these known subformulas.

The acute reader may notice here the importance of us-
ing a two-way logic: this makes possible the inference of
a formula that expresses constraints on both the upward
context (ancestor nodes) and the downward context (de-
scendant nodes) of some variable $v ranging over input tree
nodes. In fact, t, as computed above, characterizes the up-
per context of $v in the input (or, in other terms, how a
node bound to $v has been reached in the input and what
this implies in terms of structural requirements) whereas t2
characterizes the downward context of $v in the input (or,
in other terms, how the children of $v in the input, if any,
look like based on what we know from the output type).
This capability of inferring two-way constraints for the in-
put constitutes a fundamental trait of our approach.

3.5.3 Element Type
For the general case where an element type is expected as

output, each instruction is dealt with by a few specifically
designed inference rules. The inferred constraint varies a
lot depending on the nature of the instruction and on the
situation determined by the rule premises. Figure 9 presents
rules for all the main control statements, including the for

loop, the if statement, and instructions in charge of output
production. We comment on these rules below.

Generation of nodes.
One of the simplest yet essential rule is elem-elem. This

rule checks whether the node generated by the instruction is
compatible with the expected node label of the output type.
In addition, since the XQuery instruction produces a tree
(and not a forest) the output type for siblings of the pro-
duced node must be nullable. Otherwise, elem-elem’ infers
the formula K in order to indicate the problem. empty-
elem always infers K since the empty instruction (modeling
no instruction at all) is simply not capable of generating the
expected output type that requires the existence of at least
one element.

Conditional statements.
The case of the “if” statement is especially interesting as

it clearly illustrates to which extent the precision of the type-
checker can be increased depending on the expressive power
of the underlying logic. The rule if-elem applies whenever
the condition does not contain any equality test. In this
case, the logic is expressive enough to fully model the con-
ditional statement: the rule infers two possible cases: either
the input logically follows the restrictions expressed by the
condition in which case the additional restrictions computed
by the analysis of the “then” branch apply; or the input does
not logically follow the restrictions computed from the anal-
ysis of the condition in which case the further restrictions
computed by the analysis of the “else” branch apply. This
complete logical modeling of the “if” statement cannot be
achieved if the condition contains an equality test, because
we do not know the result of the test statically (as it depends
on values obtained at runtime). Rule if-elem’ is in charge
of this case: an equality test is modeled with the logical for-
mula J which abstracts over this part of the condition by
not requiring any restriction on the input. Because of this
unavoidable approximation, the global inferred formula is a
disjunction of one of the two possibilities obtained by the
further analyses of the “then” and “else” branches.

in-elem

t
in
ÐÝ e

t
in
ÐÝ <σ>teu</σ>

in-empty

J
in
ÐÝ ε

in-seq

t1
in
ÐÝ e1 t2

in
ÐÝ e2

t1 ^ t2
in
ÐÝ e1, e2

in-for
t ê for $v in e1 return e2, θpxanyq

t
in
ÐÝ for $v in e1 return e2

in-let
t ê let $v := e1 return e2, θpxanyq

t
in
ÐÝ let $v := e1 return e2

in-if
t ê if cond then e1 else e2, θpxanyq

t
in
ÐÝ if cond then e1 else e2

in-var

J
in
ÐÝ $var

in-root
ϕ “

〈
1
〉
J^

〈
2
〉
J

ϕ
in
ÐÝ root()

in-child
ϕ “ µX.

〈
1
〉
$v _

〈
2
〉
X

toFpnq ^ ϕ
in
ÐÝ $v child::n

in-parent
ϕ “ 〈1〉µX.$v _ 〈2〉X

toFpnq ^ ϕ
in
ÐÝ $v parent::n

in-desc
ϕ “ µX.

〈
1
〉
X _

〈
2
〉
X _

〈
1
〉
$v

toFpnq ^ ϕ
in
ÐÝ $v desc::n

in-anc
ϕ “ 〈1〉µX.$v _ 〈1〉X _ 〈2〉X

toFpnq ^ ϕ
in
ÐÝ $v anc::n

in-psibl
ϕ “ 〈2〉µX.$v _ 〈2〉X

toFpnq ^ ϕ
in
ÐÝ $v psibl::n

in-nsibl
ϕ “

〈
2
〉
µX.$v _

〈
2
〉
X

toFpnq ^ ϕ
in
ÐÝ $v nsibl::n

Figure 8: Rules for instructions inside in clauses of for loops.

Sequence of instructions.
The case of a sequence of instructions e1, e2 is especially

hard to deal with as we have to determine which part of
the output type is generated by e1 and which part is gen-
erated by e2. This means that we have to perform a joint
analysis of (e1, e2) and the output type in order to deter-
mine at which location the output type can be split in two
parts respectively generated by e1 and e2. For this pur-
pose, we introduce an auxiliary function succ pe, tq defined
in Figure 10 . For a given instruction e and output type t,
the function succ pe, tq computes all the possible remaining
parts of the output type after removing all the possible parts
that can be generated by e. This is represented using a set
of type variables. Intuitively, if we consider the case of a
sequence e1, e2, succ pe1, tq returns the set of variables to
be considered as possible entrypoints for e2. In other terms,
succ pe1, tq represents the set of all possible places where t
can be split in two parts: the first being generated by e1

and the second by e2.
The definition of succ pe, tq is presented in Figure 10 where

t is used as a shorthand for element n {x1, x2} and where
axis P tchild, desc, parent, anc, psibl, nsiblu.

By definition, if xε P succ pe, tq then e can produce an out-
put that matches the entire output type t. If xε R succ pe, tq
then the output type is expecting something else (a manda-
tory remaining part) that cannot be generated by e. Finally,
succ pe, tq “ H means that e generates a pattern which is
not acceptable for t.

Using this auxiliary function, we design the backward type
inference rules seq-elem, seq-elem’ and seq-elem” for the
sequence of instructions. seq-elem eliminates the cases
where e1 generates a pattern which is not compatible with
the output type. seq-elem’ eliminates the cases where e1

does generate a pattern compatible with the output type,
but e2 does not. Finally, seq-elem” computes the set S
of all admissible entrypoints for e2. The set F filters out
entrypoints for which e2 cannot fully generate the expected
remaining part of the type. F contains the admissible entry-
points for e2 so that e1, e2 successfully generates an output

which fully satisfies the entire expected output type. The
inferred formula ϕ simply describes all acceptable splits of
the output type so that e1, e2 generates an output valid with
respect to the output type.

Iteration and variable-binding.
To better understand the case of the for loop and back-

ward type inference performed by for-elem, recall that the
semantics of the
“for $v in e1 return e2” statement consists in first evaluat-
ing instruction e1, and then in iterating over each member of
the sequence obtained by the result of the evaluation of e1.
Iteration is done by successively setting variable $v to each
member of this sequence and executing e2 each time accord-
ingly. Obviously, e2 may contain one (or possibly several)
occurrences of $v . For this reason, backward inference for
the for loop is intrinsically tied to backward inference for
variables in navigation steps, and the behavior of for-elem
must be understood together with the behavior of rules that
deal with step-related variables, and in particular rules of
Figure 11. Whenever a variable occurrence is encountered
inside e2, a rule (e.g. child-elem) associates the expected
output type to this variable by inferring a logical formula
that represents the expected output type and that contains
the name $v of the variable which is meant as a placeholder.
This placeholder will be replaced at a later stage whenever
the inference process will come back to the for loop that
binds this variable (recall that the inference process is a
depth-first tree traversal of the XQuery instruction parse
tree). Rule for-elem” replaces all occurrences of $v in t2
with the result t1 of the analysis of the instruction e1 bound
to $v by the for loop. In this manner, constraints on $v
coming from the output type, propagated by the rules in
charge of steps, will properly apply later when the binding
of $v is met.

Three rules handle the case of the for loop: for-elem,
for-elem’, for-elem”. The rules for-elem and for-elem’
handle peculiar cases where the inference simply consists in
copying a portion of the output type into the inferred input

elem-elem
pn “ ˚ _ n “ σq t ê e, θpx1q nullablepθpx2qq

t ê <σ>teu</σ>, element n {x1, x2}

elem-elem’
pn ‰ ˚ ^ n ‰ σq _ nullablepθpx2qq

K ê <σ>teu</σ>, element n {x1, x2}

empty-elem
K ê ε, element n {x1, x2}

seq-elem
xε R succ ppe1, e2q, element n {x1, x2}q

K ê pe1, e2q, element n {x1, x2}

seq-elem’
S “ succ pe1, element n {x1, x2}q S ‰ H

F “ ts P S | xε P succ pe2, θpsqqu ϕ “
ł

sPF

ts1 ^ somewherepts2qq ts1 ê e1, pelement n {x1, x2}q
”

ÝÑs{xε

ı

ts2 ê e2, θpsq

ϕ ê pe1, e2q, element n {x1, x2}

for-elem
ϕ “ $v 1 ^ 〈1〉 f 1pelement n {x1, x2}q

ϕ ê for $v in $v 1 child:: ˚ return $v , element n {x1, x2}

for-elem’
ϕ “ $v 1 ^ 〈2〉 f 1pelement n {x1, x2}q

ϕ ê for $v in $v 1 nsibl:: ˚ return $v , element n {x1, x2}

for-elem”
xε R succ pfor $v in e1 return e2, element n {x1, x2}q

K ê for $v in e1 return e2, element n {x1, x2}

for-elem”’
xε P succ pfor $v in e1 return e2, element n {x1, x2}q ϕ “ forconstraintpx, e1, e2q let x “ element n {x1, x2} in x

ϕ
”

$v{J

ı

ê for $v in e1 return e2, element n {x1, x2}

let-elem

t1
in
ÐÝ e1 t2 ê e2, element n {x1, x2}

t2

”

$v{t1

ı

ê let $v := e1 return e2, element n {x1, x2}

if-elem
 hasEqpcondq c “ ctoFpcondq t1 ê e1, element n {x1, x2} t2 ê e2, element n {x1, x2}

pc^ t1q _ p c^ t2q ê if cond then e1 else e2, element n {x1, x2}

if-elem’
hasEqpcondq t1 ê e1, element n {x1, x2} t2 ê e2, element n {x1, x2}

t1 _ t2 ê if cond then e1 else e2, element n {x1, x2}

root-elem
ϕ “ toFpnq ^

〈
1
〉
J^

〈
2
〉
J^ nextp1, x1q nullablepθpx2qq

ϕ ê root(), element n {x1, x2}

root-elem’
 nullablepθpx2qq

K ê root(), element n {x1, x2}

var-elem
nullablepθpx2qq ϕ “ toFpnq ^ nextp1, x1q

$v ^ ϕ ê $v , element n {x1, x2}

var-elem’
 nullablepθpx2qq

K ê $v , element n {x1, x2}

var-elem”
isChildOrNsiblStarp$vq ϕ “ toFpnq ^ nextp1, x1q ^ nextp2, x2q

$v ^ ϕ ê $v, element n {x1, x2}

var-elem”’
 isChildOrNsiblStarp$vq ϕ ê Γp$vq, element n {x1, x2}

$v ^ ϕ ê $v, element n {x1, x2}

Figure 9: Rules for the main control instructions in the presence of the element type as output, when the
expected output type is supposed to be consumed entirely by the considered instruction.

succ pe, t1 | t2q “ succ pe, t1q Y succ pe, t2q

succ pe, let x “ t1 in t2q “ succ pe, t2q

succ p<σ>teu</σ>, ()q “ H

succ pε, ()q “ txεu

succ pe1, e2, ()q “

"

txεu if nilablepe1q ^ nilablepe2q
H otherwise

succ pfor $v in e1 return e2, ()q “ succ pe2, ()q

succ plet $v := e1 return e2, ()q “ succ pe2, ()q

succ pif cond then e1 else e2, ()q “ succ pe1, ()q Y succ pe2, ()q

succ p$v axis::n, ()q “ txεu

succ p$v , ()q “ H

succ p$v, ()q “ succ pΓp$vq, ()q

succ proot(), ()q “ H

succ p<σ>teu</σ>, tq “

"

tx2u if matchpσ,nq
H otherwise

succ pε, tq “ H

succ ppe1, e2q, tq “

"
Ť

xPsuccpe1,tq
succ pe2, θpxqq if nilablepe1q

Ť

xPsuccpe1,tq
succ pe2, θpxqq Y succ pe2, tq otherwise

succ plet $v := e1 return e2, tq “ succ pe2, tq

succ pif cond then e1 else e2, tq “ succ pe1, t1q Y succ pe2, t2q

succ pfor $v in e1 return e2, tq “
k
ď

i“1

succ
`

ei, t
˘

such that
k`1
ď

i“1

succ
`

ei, t
˘

“

k
ď

i“1

succ
`

ei, t
˘

where e
def
“ e2

succ proot(), tq “ tx2u

succ
`

$v axis::n 1, t
˘

“

"

H if matchpn 1,nq
tx2u Y succ p$v axis::n 1, θpx2qq if matchpn 1,nq

succ p$v , tq “ succ p< ˚ >tεu</ ˚ >, tq

succ p$v, tq “ succ pΓp$vq, tq

Figure 10: Computation of the set of variables reached in type t after output production by e.

type. The rule for-elem” is in charge of the more general
remaining cases. Here, the principle is very similar to the one
followed for the sequence (rule seq-elem”). This is because
a statement for $v in e1 return e2 can be theoretically seen
as an unbounded sequence of the form e2, e2, ..., e2. This is
exactly what is done by the rule for-elem”.

forconstraintpx, e1, e2q
def
“ sewfirstpe1, iterpx, e1, e2,Hqq

We define an auxiliary function iterpx, e1, e2, Eq that in-
fers an input formula such that the evaluation of e2 (possibly
repeated any number of times) produces what is expected
at x in the output type. For some type variable x, some
instructions e1 and e2, and some set E of type variables,
iterpx, e1, e2, Eq is defined as follows:

iterpx, e1, e2, Eq
def
“ µXx.ϕpS, e1q _

ł

sPS,s‰xε

sewpe1, ts, ψq

where S “ succ pe2, θpxqq,

ts ê e2, θpxq
”

ÝÑs
{xε

ı

,

ϕpS, e1q “

"

sewlastpe1, txεq if Ds P S | nullablepθpsqq
K otherwise

,

Xx is a fresh recursion variable associated to x,

and ψ “

"

iterps, e1, e2, E Y txuq if s R E
ψ “ Xs if s P E

E represents the set of already visited type variables. In-
tuitively, iterpx, e1, e2, Eq builds the tree of all possible
ways to “consume” entirely the output type by productions
made by successive evaluations of e2 that finally arrive to
the empty sequence xε in the output type. Branches that
cannot reach xε are ignored (K is returned). The function
sewp$v child::˚, ϕ1, ϕ2q is in charge of properly “sewing”
the portions of the inferred input type depending on the
way the input tree nodes were accessed (i.e. depending on
e1 in the for loop). For example:

sewfirstp$v child::˚, ϕq
def
“ $v ^ 〈1〉ϕ

sewp$v child::˚, ϕ1, ϕ2q
def
“ ϕ1 ^ 〈2〉ϕ2

sewlastp$v child::˚, ϕq
def
“ ϕ^ 〈2〉J

The general idea is that a successful path between an entry
point for e2 and xε must exist. Basically the expected output
type must be “consumed” entirely after a certain number of
application of e2.

Finally, notice that the rule var-elem’ may raise an error
whenever some next siblings are required in the output type,
because they cannot be generated by $v which is bound to
a single tree, by definition of for variables. The rules var-
elem” and var-elem”’ are in charge of let variables that
can be bound to forests. Inferred free variables will simply
be substituted by rule let-elem.

Navigation in the input tree.
Figure 11 presents rules that deal with all the instructions

that perform navigation in the input tree. Most of the rules
use the hypothesis Hsiblpx2,nq that checks the compatibility
of the expected output type with the nodes returned by the
step:

Hsiblpx2,nq
def
“ satpnextp2, x2q ^ ϕrestrictSiblingsptoFpnqqq

where the predicate satpψq checks whether a given formula
ψ is satisfiable, using a direct call to the solver of [9]. In
the above definition, ϕrestrictSiblingspψq ensures that all next
siblings satisfy ψ, and is defined as follows:

ϕrestrictSiblingspψq
def
“ 〈2〉J_ 〈2〉µX.ψ ^ p 〈2〉J_ 〈2〉Xq

Notice that checking the hypothesis Hsiblpx2,nq is faculta-
tive but increases precision.

3.6 Termination of the Algorithm

Proposition 3.1. The inference process terminates for
any instruction e and output type t.

Proof (sketch): The inference process terminates because
each inference rule recursively calls other rules on instruc-
tions whose sizes are strictly smaller compared to the size
of the initial instruction. Therefore, the bounded size of
the XQuery program parse tree guarantees termination of
the inference process. The only exception are rules expr-
union and expr-rec, which recursively call other rules on
same-size instructions, but with output types whose sizes are
strictly decreased. This guarantees termination even in the
presence of recursion in the output type (due to the guarded
recursion restriction). Specifically, in the presence of recur-
sion in the output type, a rule xxx-elem will eventually
apply in order to reach the recursive occurrence of a type
variable. By examining all the xxx-elem rules (shown in
Figures 9 and 11) we can see that each rule either performs
a recursive call on an instruction whose size is decreased, or
terminates directly (without any recursive call). �

The next section notably details step by step how the
implementation processes an example involving recursion in
the output type.

4. PRACTICAL EXPERIMENTS

4.1 Implementation Architecture
The whole system is implemented in Java and is obtained

by the implementation and then the assembly of several
components. First, we rely on a parser for XQuery expres-
sions (we use JJTree to generate a basic parser from the
XQuery normative grammar specification), and, more im-
portantly an API for representing and manipulating Core
XQuery expression parse trees. A set of parsers for DTDs,
XML Schemas and Relax NG schemas read schema files and

produce a unifying unranked regular tree grammar represen-
tation from a description in any of those languages. We use
the already available “MSV” parser, and we convert its in-
ternal representation in terms of our CFT. At this stage, a
converter translates the unranked regular tree grammar into
the corresponding binary tree grammar. Using an API for
manipulating binary tree grammars, we have implemented
a compiler that translates the binary tree grammar in terms
of a logical formula. We also use an API to generate and
manipulate logical formulas. Using these two APIs we have
implemented all the auxiliary predicates needed for the in-
ference rules. Inference rules are implemented using the vis-
itor pattern. The input XQuery expression is traversed, and
corresponding rules are called on each subexpression, de-
pending on the nature of the construct of the output type.
Rules are directly implemented (as a separate Java class) as
described in the present paper: each rule generates a por-
tion of a logical formula, that possibly contains a variable
that will be substituted by another piece of formula at a
later step when the variable binder is met (when the rules
for-xxx or let-xxx apply). The global logical formula is thus
obtained by the assembly of its sub-formulas when the stack
of recursive calls is emptied. Finally, we rely on the satis-
fiability solver of [9] for checking the unsatisfiability of the
negation of the implication between formulas representing
the input type and the inferred input type2.

The implementation of our tool is available from the fol-
lowing URL: http://tyrex.inria.fr/xqtc

4.2 Experimental Results and Discussion
We detail how a simple example is processed by the imple-

mentation in order to illustrate how the technical machinery
works. Consider the program e defined below:

e
def
“ let $v := root() return <r>t$v child::˚u</r>

This program generates a document with a r-labeled root
whose children are the children of the root of the input tree.
Consider also an output tree type tout defined as follows:

tout
def
“ let xε “ () in

let x “ element b {xε, x} | () in

element r {x, xε}

This type represents the set of documents with an r-
labeled root which can have an arbitrary number of b chil-
dren leaves (or, intuitively, rrb˚s for unranked trees). Con-
cretely, the grammar “sample.dtd” describing this type is
parsed and converted to a Context Free Type (CFT) match-
ing the syntax given in Figure 4, as shown by the following
trace:

Resulting CFT is:
$b ->b(())
$1 ->($b | ($b, $1))
$r ->r(($1 | ()))
$a ->a($b)
Start symbol is $r

This grammar is then automatically converted into the bi-
nary tree type representation (matching the syntax shown
in Figure 5):

2Checking containment A Ď B corresponds to checking the
logical implication A ñ B. Since we use a satisfiability
checker (and not a validity checker), this property is checked
by testing the unsatisfiability of Añ B “ A_B, that is,
the satisfiability of pAñ Bq “ A^ B.

http://tyrex.inria.fr/xqtc

child-elem
ϕ “ $v ^ 〈1〉

`

toFpn 1q ^ nextp1, x1q ^ nextp2, x2q
˘

ϕ ê $v child::˚, element n 1 {x1, x2}

child-elem’
n ‰ ˚ matchpn,n 1q Hsiblpx2,nq m “ ntoFpn,n 1q ϕ “ m^ nextp1, x1q

$v ^ 〈1〉µX.ϕ_ p toFpnq ^ 〈2〉Xq ê $v child::n, element n 1 {x1, x2}

wrong-step-elem
n ‰ ˚ matchpn,n 1q _ Hsiblpx2,nq

K ê $v axis::n, element n 1 {x1, x2}

parent-elem
matchpn,n 1q nullablepθpx2qq ϕ “ ntoFpn,n 1q ^ nextp1, x1q

$v ^ µX.
〈
1
〉
ϕ_

〈
2
〉
X ê $v parent::n, element n 1 {x1, x2}

parent-elem’
 matchpn,n 1q _ nullablepθpx2qq

K ê $v parent::n, element n 1 {x1, x2}

desc-elem
ϕ “ $v ^ 〈1〉 ptoFpn 1q ^ nextp1, x1qq

ϕ ê $v desc::˚, element n 1 {x1, x2}

desc-elem’
n ‰ ˚ matchpn,n 1q Hsiblpx2,nq m “ ntoFpn,n 1q ϕ “ m^ nextp1, x1q

$v ^ 〈1〉µX.ϕ_ toFpnq ^ p〈1〉X _ 〈2〉Xq ê $v desc::n, element n 1 {x1, x2}

anc-elem
ϕ “ toFpn 1q ^ nextp1, x1q

$v ^ µX.
〈
1
〉
ϕ_

〈
2
〉
X ê $v anc::˚, element n 1 {x1, x2}

anc-elem’
n ‰ ˚ matchpn,n 1q Hsiblpx2,nq ϕ “ ntoFpn,n 1q ^ nextp1, x1q

$v ^ µX.
〈
1
〉
pϕ_ toFpnq ^Xq _

〈
2
〉
X ê $v anc::n, element n 1 {x1, x2}

psibl-elem
ϕ “ toFpn 1q ^ nextp1, x1q

$v ^
〈
2
〉
ϕ ê $v psibl::˚, element n 1 {x1, x2}

psibl-elem’
n ‰ ˚ matchpn,n 1q Hsiblpx2,nq ϕ “ ntoFpn,n 1q ^ nextp1, x1q

$v ^
〈
2
〉
µX.ϕ_ toFpnq ^

〈
2
〉
X ê $v psibl::n, element n 1 {x1, x2}

nsibl-elem
ϕ “ toFpn 1q ^ nextp1, x1q

ϕ^ 〈2〉ϕ ê $v nsibl::˚, element n 1 {x1, x2}

nsibl-elem’
n ‰ ˚ matchpn,n 1q Hsiblpx2,nq ϕ “ ntoFpn,n 1q ^ nextp1, x1q

$v ^ 〈2〉µX.ϕ_ toFpnq ^ 〈2〉X ê $v nsibl::n, element n 1 {x1, x2}

Figure 11: Rules for steps with the element type as output, and supposed to consume the entire output type.

Resulting BTT is:
$Epsilon ->EPSILON
$2 ->b($Epsilon, $Epsilon) | b($Epsilon, $2)
$1 ->EPSILON | b($Epsilon, $Epsilon) | b($Epsilon, $2)
$r ->r($1, $Epsilon)
Start Symbol is $r

The XQuery program e is parsed, and the analysis is trig-
gered at the root of the above output type:

Analyzing ’sample.xq’ vs ’sample.dtd’ starting at ’r’...
Considered Input XQuery expression:
let $v := root() return element r {child::* }

The system prints the tree of all rules that apply for the
present example, as shown in the trace presented in Fig-
ure 12. The trace notably shows parameters for each inter-
mediate rule called. The name of the applied rule is printed
together with its input parameters (instruction and type)
whenever the rule is triggered. Whenever the rule returns
its result (potentially after calling other rules), the resulting
formula corresponding to the inferred input type portion is
printed. Indentation in the trace corresponds to the depth
in the tree of rule calls.

Specifically, the first rule triggered is let-elem of Fig-
ure 11, which is instantiated as follows:

let-elem
t1 ê root(), θpxanyq t2 ê <r>t$v child::˚u</r>, tout

t2

”

$v{t1

ı

ê let $v := root() return <r>t$v child::˚u</r>, tout

(2)

The application of this rule recursively calls one rule for
building t1 and one rule for building t2. It therefore gener-
ates two branches.

For the first branch, since θpxanyq “ pelement ˚ {xany, xany}q |
() is a disjunction at top level, the formula t1 is obtained by
the application of expr-union, which in turn calls root-
elem and root-empty. The application of root-empty
directly yields the formula K and therefore only the result
root-elem is relevant for the disjunction. This result is
obtained as follows:

This rule performs the auxiliary computations: toFp˚q “

J, nextp1, xanyq “ 〈1〉J_ 〈1〉 fpxanyq which is equivalent
to J because fpxanyq “ µX.p 〈1〉J _ 〈1〉Xq ^ p 〈2〉J _
〈2〉Xq is equivalent to J, and nullablepθpxanyqq “ true. It

then returns the inferred type t1 “
〈
1
〉
J ^

〈
2
〉
J that

simply requires the existence of a root in the input tree.
For the second branch, the rule expr-rec is applied twice

to go through the let statements in tout until the rule elem-
elem applies for element r {x, xε}. This rule application
recursively triggers expr-union for splitting the choice θpxq.
Again, two branches are created from the split: one that
applies child-empty, which terminates immediately with
$v ^ 〈1〉J, and another one which triggers expr-union
and so forth, as illustrated in 12.

If we pop the stack of recursive calls, at (2) we end up
with t1 as computed above and a value for t2 returned by
rule elem-elem, as shown in 12. The final inferred type

is then obtained by the substitution t2
”

$v
{t1

ı

which denotes

t2 where every occurrence of $v (X1 in the implementation
trace) is replaced with t1. This yields the final formula tinf
shown in Figure 13:

This inferred formula is surrounded by a formula that en-
sures its satisfaction at the root of the input tree, before
being used in the formula to check containment.

The first part of the formula in Figure 13 states that a
child of the root is labeled “b” and does not (line 1), or the
root has a first child labeled “b” (does not have any chil-
dren) and an immediate sibling which is labeled “b” and do
not have any children, as well as all its potential successors
(recursion on X2, line 2), or the root has only one first child
child labeled “b” without children and no sibling (line 3).

One can easily check that this is exactly the type that
represents the set of all admissible input documents for e to
generate a valid tout document.

Notice that the final inferred type contains duplicate for-
mulas (it refers to the root three times). This is because
rules do not communicate (different branches do not share
their results) in the current state of the implementation.
However, this duplication of subformulas is not a real issue,
because duplicate subformulas are automatically factorized
by the satisfiability solver.

Once tinf is computed, type-checking is performed by check-
ing whether tinf Ď tin. This is formulated as follows:

phi => ~<-1>T & ~<-2>T & mu X. tinf | <1>X | <2>X

where tinf is the formula shown in Figure 13 and phi is the
logical formula corresponding to tin.

For instance, if we instantiate tin as a type allowing one
children labeled “a” under the root, then the system pro-
duces a counter-example of the form *[a]. Obviously, in
realistic scenarios, more rules are triggered, the rule applica-
tion tree is bigger, and generated formulas are much harder
to read. Counter-examples, which are also more complex,
become of greater value for the XQuery programmer. In
hard cases, this counter-example can be given to a XQuery
runtime debugger, for a step-by-step analysis to find the
precise locations of the erroneous statement(s) in the pro-
gram. Notice, that the soundness of our type-checker im-
plies that the XQuery program generates an output which
is necessarily not valid (with respect to the expected output
type) when fed with the counter-example as input. Con-
trary to other approaches investigated in the literature that
produce false negatives, here the effort spent in debugging
is always relevant. Notice also that our type-checker is ca-
pable of detecting a wide range of errors, from basic ones to
much more involved ones. The class of basic errors detected
ranges from very basic ones such as inexistent elements, er-

rors in element names, to wrong ordering in expected content
models and generation of an element in inappropriate loca-
tions. The type-checker also detects much more subtle er-
rors depending on the expressive power used to describe ex-
pected output type constraints. In particular, features such
as context-sensitive content models allowed in XML schemas
or in Relax NGs are fully captured by our BTT and logical
modelings. Therefore the type-checker is equipped to detect
errors caused by the generation of an output that matches
a possible content model but not in the proper context.

The secret for capturing extremely precise context infor-
mation is that we are capable of tracking precisely all the
context manipulation performed by forward, backward and
recursive path expressions. We believe that this removes
a major obstacle that prevented the development of precise
type-checkers and their widespread use. This is precisely the
limitation of existing type-checkers, such as the pioneering
Galax [6] which is still among the few available implemen-
tations today. Galax is typically unable to detect the error
induced by the use of the backward axis in the example given
in Section 2, because it directly implements the type-system
proposed in the XQuery recommendation [5].

5. RELATED WORK
The closest works in terms of objectives are the ones of

W3C [5] and [4]. [5] describes a type system based on for-
ward type inference which is polynomial (except for nested
let clauses). Colazzo goes one step further by a thorough
analysis of precision and complexity of this type-system and
by introducing his own, more precise (but exponential) type
system. Both works suffer from the same limitations in-
herent to forward type inference, as described in Section 1.
The work in [4] fails to capture backward axes: the pro-
posed type system only supports child and desc-or-self

axes. Furthermore, it involves a complex decomposition of
the “in” clause of the for loop, which can be avoided us-
ing backward type inference, without loss of precision. The
type-system proposed by the W3C has been inspired by the
seminal work found in [10], which is itself based on finite tree
automata containment [11]. In the programming languages
community, the XML type-checking problem has also been
studied for other particular domain-specific languages such
as CDuce [1], XSLT [13] or with specific transformers like
transducers [14, 15]. For a recent survey of related works on
type-checking for XML, see [2] and references thereof.

The closest work in terms of technical machinery and
spirit is [17] which develops backward type inference for
a fragment of XSLT called XSLT0. This fragment only
supports the parent-to-child relationship, and its expressive
power is incomparable to the much more expressive XQuery
fragment we consider here. Furthermore, at the time, the
logic proposed in [9] on which we develop the present work
was not known. This logic is key for an efficient implementa-
tion because it avoids the drawbacks of the automata-based
approach described in [17]. Specifically, it overcomes the
blow-ups due to tree automata complementation.

The concept of backward type inference was first the-
oretically introduced in [16]. They propose a theoretical
framework based on k-pebble tree transducers, which is a
output-tree producing version of finite tree automata. They
show that the type inferred as input is definable in MSO
(monadic-second order logic). In other terms, there exists
a monadic-second order logic formula that describes the in-

put type. Unfortunately, their method relies on a conver-
sion from MSO to finite tree automata which requires non-
elementary time complexity, that is, the time complexity is
not bound by any fixed number of composition of exponen-
tials. As a result, while this is an interesting theoretical
result, this makes any direct implementation out of reach.
Similar approaches have been proposed in [12, 15].

6. CONCLUSION
We proposed a backward type inference algorithm and a

type-checking method for XQuery programs. The XQuery
fragment we consider is equipped with the main control
statements (for loops, conditionals, let binders) as well as
backward, forward and recursive navigation performed by
XPath expressions. We also propose a prototype implemen-
tation of these techniques.

This is a step in the design and development of a new gen-
eration of type-checkers for XQuery that: (i) are more pre-
cise, (ii) are feasible in practice (implementation is tractable
and efficient) and (iii) natively support a larger set of fea-
tures found in XQuery programs, and in particular backward
XPath axes. We believe that we identified the main obstacle
in type-checking XQuery, namely the combination of preci-
sion and practical feasibility, when the main traits of the
XQuery language are considered.

One perspective for further work consists in converting the
inferred formula to a XML representation (XML Schema).
Another perspective for further work consists in implement-
ing the support of attributes and basic types such as string
and integer, which can be modeled in the logic using atomic
propositions.

7. REFERENCES
[1] V. Benzaken, G. Castagna, and A. Frisch. CDuce: an

XML-centric general-purpose language. In Proceedings
of the eighth ACM SIGPLAN international conference
on Functional programming, ICFP ’03, pages 51–63,
New York, NY, USA, 2003. ACM.

[2] V. Benzaken, G. Castagna, H. Hosoya, B. C. Pierce,
and S. Vansummeren. XML typechecking. In L. Liu
and M. T. Özsu, editors, Encyclopedia of Database
Systems, pages 3646–3650. Springer US, 2009.

[3] S. Boag, D. Chamberlin, M. Fernández, D. Florescu,
J. Robie, and J. Siméon. XQuery 1.0: An XML query
language. W3C WDt, 2005.
http://www.w3.org/TR/xquery/.

[4] D. Colazzo and C. Sartiani. Precision and complexity
of XQuery type inference. In Proceedings of the 13th
International ACM SIGPLAN Conference on
Principles and Practice of Declarative Programming,
July 20-22, 2011, Odense, Denmark, pages 89–100,
2011.

[5] D. Draper, M. Dyck, P. Fankhauser, M. Fernández,
A. Malhotra, K. Rose, M. Rys, J. Siméon, and
P. Wadler. XQuery 1.0 and XPath 2.0 formal
semantics, W3C recommendation, December 2010.
http://www.w3.org/TR/xquery-semantics/.

[6] M. F. Fernández and J. Siméon. Building an extensible
xquery engine: Experiences with Galax (extended
abstract). In Database and XML Technologies, Second
International XML Database Symposium, XSym 2004,
Toronto, Canada, pages 1–4, 2004.

[7] A. Fokoue, K. Rose, J. Siméon, and L. Villard.
Compiling XSLT 2.0 into XQuery 1.0. In Proceedings
of the 14th international conference on World Wide
Web, WWW ’05, pages 682–691, New York, NY, USA,
2005. ACM.

[8] P. Genevès, N. Layäıda, and V. Quint. Impact of
XML schema evolution. ACM Trans. Internet
Technol., 11:4:1–4:27, July 2011.

[9] P. Genevès, N. Layäıda, and A. Schmitt. Efficient
static analysis of XML paths and types. In PLDI ’07,
pages 342–351, 2007.

[10] H. Hosoya and B. C. Pierce. XDuce: A statically
typed XML processing language. ACM Trans. Internet
Technol., 3(2):117–148, May 2003.

[11] H. Hosoya, J. Vouillon, and B. C. Pierce. Regular
expression types for XML. ACM Trans. Program.
Lang. Syst., 27(1):46–90, 2005.

[12] K. Inaba, H. Hosoya, and S. Maneth. Multi-return
macro tree transducers. In Implementation and
Applications of Automata, 13th International
Conference, CIAA, pages 102–111, 2008.

[13] C. Kirkegaard, A. Møller, and M. I. Schwartzbach.
Static analysis of XML transformations in Java. IEEE
Transactions on Software Engineering, 30(3):181–192,
March 2004.

[14] S. Maneth, A. Berlea, T. Perst, and H. Seidl. XML
type checking with macro tree transducers. In
Proceedings of the twenty-fourth ACM
SIGMOD-SIGACT-SIGART symposium on Principles
of database systems, PODS ’05, pages 283–294, New
York, NY, USA, 2005. ACM.

[15] S. Maneth, T. Perst, and H. Seidl. Exact XML type
checking in polynomial time. In T. Schwentick and
D. Suciu, editors, ICDT, volume 4353 of Lecture Notes
in Computer Science, pages 254–268. Springer, 2007.

[16] T. Milo, D. Suciu, and V. Vianu. Typechecking for
XML transformers. J. Comput. Syst. Sci., 66(1):66–97,
2003.

[17] A. Tozawa. Towards static type checking for XSLT. In
ACM Symposium on Document Engineering, pages
18–27. ACM, 2001.

http://www.w3.org/TR/xquery/

elem-empty
K ê <σ>teu</σ>, ()

empty-empty
J ê ε, ()

seq-empty
t1 ê e1, () t2 ê e2, ()

t1 ^ somewherept2q ê e1, e2, ()

for-empty

t1 ê e1, () t
in
ÐÝ e1 t2 ê e2, ()

t1 _ t2

”

$v{t

ı

ê for $v in e1 return e2, ()

let-empty

t1
in
ÐÝ e1 t2 ê e2, ()

t2

”

$v{t1

ı

ê let $v := e1 return e2, ()

if-empty
 hasEqpcondq

c “ ctoFpcondq t1 ê e1, () t2 ê e2, ()

c^ t1 _ c^ t2 ê if cond then e1 else e2, ()

if-empty’
hasEqpcondq t1 ê e1, () t2 ê e2, ()

t1 _ t2 ê if cond then e1 else e2, ()

child-empty
ϕ “ 〈1〉µX.toFpnq _ 〈2〉X

$v ^ ϕ ê $v child::n, ()

desc-empty
ϕ “ 〈1〉µX.toFpnq _ 〈1〉X _ 〈2〉X

$v ^ ϕ ê $v desc::n, ()

parent-empty
ϕ “ µX.

〈
1
〉
toFpnq _

〈
2
〉
X

$v ^ ϕ ê $v parent::n, ()

anc-empty
ϕ “ µX.

〈
1
〉
toFpnq _

〈
1
〉
X _

〈
2
〉
X

$v ^ ϕ ê $v anc::n, ()

nsibl-empty
ϕ “ 〈2〉µX.toFpnq _ 〈2〉X

$v ^ ϕ ê $v nsibl::n, ()

psibl-empty
ϕ “

〈
2
〉
µX.toFpnq _

〈
2
〉
X

$v ^ ϕ ê $v psibl::n, ()

root-empty
K ê root(), ()

var-empty
K ê $v , ()

var-empty’
$v ê $v, ()

Figure 7: Rules for the empty sequence as output.

Inferring Input Type...
let_elem let $v := root() return
element r {child::* } , r($1, $Epsilon)

expr_union root() , *($Any, $Any) | EPSILON
root_elem root() , *($Any, $Any)
root_elem returns: (~(<-2>T) & ~(<-1>T))
root_empty returns: false

expr_union returns:(~(<-2>T) & ~(<-1>T))
elem_elem element r {child::* } , r($1, $Epsilon)

expr_union child::* , EPSILON | b($Epsilon, $Epsilon) |
b($Epsilon, $2)
expr_union child::* , b($Epsilon, $Epsilon) |
b($Epsilon, $2)
child_elem: $v child::* , b($Epsilon, $Epsilon)
child_elem returns:(~(<2>T) & b & ~(<1>T) &
(mu X2.(<-1>X1 | <-2>X2)))
child_elem: $v child::* , b($Epsilon, $2)
child_elem returns:((mu X4.(<-2>X4 | <-1>X1)) &
<2>(mu X3.((b & <2>X3 & ~(<1>T)) | (b & ~(<2>T)
& ~(<1>T)))) & b & ~(<1>T))

expr_union returns:((~(<2>T) & b & ~(<1>T) &
(mu X2.(<-1>X1 | <-2>X2))) | ((mu X4.(<-2>X4 |
<-1>X1)) & <2>(mu X3.((b & <2>X3 & ~(<1>T)) |
(b & ~(<2>T) & ~(<1>T)))) & b & ~(<1>T)))

expr_union returns:((~(<2>T) & b & ~(<1>T) &
(mu X2.(<-1>X1 | <-2>X2))) | ((mu X4.(<-2>X4 |
<-1>X1)) & <2>(mu X3.((b & <2>X3 & ~(<1>T)) |
(b & ~(<2>T) & ~(<1>T)))) & b & ~(<1>T)))

elem_elem returns: ((~(<2>T) & b & ~(<1>T) &
(mu X2.(<-1>X1 | <-2>X2))) | ((mu X4.(<-2>X4 |
<-1>X1)) & <2>(mu X3.((b & <2>X3 & ~(<1>T)) |
(b & ~(<2>T) & ~(<1>T)))) & b & ~(<1>T)))

let_elem returns: (((mu X5.(<-1>(~(<-2>T) & ~(<-1>T)) |
<-2>X5)) & ~(<2>T) & b & ~(<1>T)) | ((mu X6.(<-2>X6 |
<-1>(~(<-2>T) & ~(<-1>T)))) & <2>(mu X3.((b & <2>X3 &
~(<1>T)) | (b & ~(<2>T) & ~(<1>T)))) & b & ~(<1>T)))

Figure 12: Tree of Applied Rules.

1. ((mu X5.<-1>(~<-2>T & ~<-1>T) | <-2>X5) & ~<2>T & b & ~<1>T)
2. | ((mu X6.<-2>X6 | <-1>(~<-2>T & ~<-1>T)) &
3. <2>(mu X3.((b & <2>X3 & ~<1>T) | (b & ~<2>T & ~<1>T))) & b & ~<1>T)

Figure 13: Inferred Input Type (tinf).

	Introduction
	Programming with XQuery
	XQuery Programs
	XQuery Types

	Backward Type Inference
	Main Principles
	Logical Representation of Inferred Types
	The Inference Process
	Auxiliary Definitions
	Inference Rules
	Choice and Recursion
	Empty Sequence
	Element Type

	Termination of the Algorithm

	Practical Experiments
	Implementation Architecture
	Experimental Results and Discussion

	Related Work
	Conclusion
	References

