
Expressive Logical Combinators for Free

Pierre Genevès (CNRS)

Joint work with Alan Schmitt (Inria)

IJCAI, July 30th 2015, Buenos Aires

Query Analysis

Constructs and Languages

query

database

schema

q

d

S

XPath, JAQL, SPARQL

XML, JSON, RDF

DTD, OWL

Problems and Applications

Query containment

Query equivalence

Query satisfiability

Static type-checking

q(d) ⊆ q′(d) for all d

q(d) = q′(d) for all d

q(d) 6= ∅ for some d

q(d) ` S ′ for all d ` S

the view update problem

optimization of programs

dead code analysis

proving program correctness

Pierre Genevès (CNRS) Expressive Logical Combinators for Free IJCAI’15, Buenos Aires 2 / 7

The Logical Approach for Query Analysis

Reducing e.g. Query Containment to Logical Satisfiability:

Query q

Query q′
1) Compilation

ϕq ∧ ¬ϕq′

Logical formula

2) Satisfiability test

Satisfiable: q 6⊆ q′

Unsatisfiable: q ⊆ q′

Complexity

Complexity of satisfiability test depends on |formula|

Blow-ups in the logical translation increase combined complexity

Succinctness of the logic is crucial!

→ Improving it: addressing more problems while reducing combined complexity

Pierre Genevès (CNRS) Expressive Logical Combinators for Free IJCAI’15, Buenos Aires 3 / 7

Example

Set of strings over Σ = {a, b, c} containing at least 2 occurrences of “a” and at
least 2 occurrences of “b”:

Pierre Genevès (CNRS) Expressive Logical Combinators for Free IJCAI’15, Buenos Aires 4 / 7

Example

Set of strings over Σ = {a, b, c} containing at least 2 occurrences of “a” and at
least 2 occurrences of “b”:

L2a2b= (a|b|c)?a(a|b|c)?a(a|b|c)?b(a|b|c)?b(a|b|c)? |
(a|b|c)?a(a|b|c)?b(a|b|c)?a(a|b|c)?b(a|b|c)? |
(a|b|c)?a(a|b|c)?b(a|b|c)?b(a|b|c)?a(a|b|c)? |
(a|b|c)?b(a|b|c)?b(a|b|c)?a(a|b|c)?a(a|b|c)? |
(a|b|c)?b(a|b|c)?a(a|b|c)?b(a|b|c)?a(a|b|c)? |

(a|b|c)?b(a|b|c)?a(a|b|c)?a(a|b|c)?b(a|b|c)?

Pierre Genevès (CNRS) Expressive Logical Combinators for Free IJCAI’15, Buenos Aires 4 / 7

Example

Set of strings over Σ = {a, b, c} containing at least 2 occurrences of “a” and at
least 2 occurrences of “b”:

L2a2b= (a|b|c)?a(a|b|c)?a(a|b|c)?b(a|b|c)?b(a|b|c)? |
(a|b|c)?a(a|b|c)?b(a|b|c)?a(a|b|c)?b(a|b|c)? |
(a|b|c)?a(a|b|c)?b(a|b|c)?b(a|b|c)?a(a|b|c)? |
(a|b|c)?b(a|b|c)?b(a|b|c)?a(a|b|c)?a(a|b|c)? |
(a|b|c)?b(a|b|c)?a(a|b|c)?b(a|b|c)?a(a|b|c)? |

(a|b|c)?b(a|b|c)?a(a|b|c)?a(a|b|c)?b(a|b|c)?

If we add ∩ to the regular expression operators:

L2a2b = ((a|b|c)?a(a|b|c)?a(a|b|c)?) ∩ ((a|b|c)?b(a|b|c)?b(a|b|c)?)

∩ offers a dramatic reduction in expression size!

Crucial when complexity of the decision procedure depends on |formula|

More generally, how can we increase succinctness?

Pierre Genevès (CNRS) Expressive Logical Combinators for Free IJCAI’15, Buenos Aires 4 / 7

Logical Combinators

A Combinator is a Predicate that:

takes logical formulas as input (and outputs a logical formula)

might arbitrarily duplicate input formulas in its definition

Examples (using branching logic from [Genevès-PLDI’07])

split(ϕ) = 〈1〉ϕ ∧ 〈2〉ϕ
1 2
ϕ ϕ

Order relations between tree nodes (e.g. depth-first tree traversal)
next(ϕ) = 〈1〉µz .ϕ ∨ 〈1〉 z ∨ 〈2〉 z︸ ︷︷ ︸

descendant(ϕ)

∨︸︷︷︸
following(ϕ)

Regular queries with counting e.g. “at least 3 occurrences of ϕ”:
threeOrMore(ϕ) = next(ϕ ∧ next(ϕ ∧ next(ϕ)))

Pierre Genevès (CNRS) Expressive Logical Combinators for Free IJCAI’15, Buenos Aires 5 / 7

Results on Combinators

Combinators form an expressive and succinct logical language

(regular tree and path languages, counting...)

Proof: combinators do not increase the complexity of decision procedures à la
[Genevès-TOCL15] which stays in 2O(|ϕ|) (MSO-complete logic)

Concrete Problem |ϕ| Time
Simple RE intersection & equivalence 30 15 ms
Query containment q ⊆ q′ (XPath) 50 50 ms

Query satisfiability with constraints (e.g. SMIL 1.0) 90 350 ms
Subtyping with rich types 60 70 ms

Schema evolution (moderate: e.g. XHTML-Basic) 170 2.5 s
Schema evolution (large: e.g. MathML) 290 8 s
Analysis of CSS style sheets (IJCAI’15) 60 40 ms

Precise static type-checking for XQuery (ICFP’15) 70 35 ms

Table: Experimental Results.

Pierre Genevès (CNRS) Expressive Logical Combinators for Free IJCAI’15, Buenos Aires 6 / 7

Try Combinators∗: http://tyrex.inria.fr/websolver

* and build your own predicate language for addressing your problem!

Pierre Genevès (CNRS) Expressive Logical Combinators for Free IJCAI’15, Buenos Aires 7 / 7

http://tyrex.inria.fr/websolver

