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NABIL LAYAÏDA, Inria

We consider a type algebra equipped with recursive, product, function, intersection, union, and complement
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over such type expressions and show how this relation can be decided in EXPTIME, answering an open
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algorithm in order to decide subtyping. We report on practical experiments made with a full implementation
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1. INTRODUCTION

In programming, subtyping represents a notion of safe substitutability: τ being a sub-
type of τ ′ means that wherever in the program something of type τ ′ is used, it is safe to
supply a value of type τ instead [Liskov and Wing 1994]. This property has a natural
set-theoretic interpretation: the set of values of type τ is included in the set of values
of type τ ′.

The semantic subtyping approach consists of using this set-theoretic property to de-
fine the subtyping relation, rather than, for example, an axiomatic definition. Types are
given an interpretation as sets and subtyping is defined as inclusion of interpretations.

The XML-centric functional language XDuce [Hosoya and Pierce 2003] uses this
semantic approach to define the subtyping relation between datatypes. Datatypes in
that language are intended to correspond to XML document types (as described, e.g.,
by DTDs), that is, regular tree grammars, and are built using pair construction, union,
and recursion. The set-theoretic interpretation of a type is the regular language of trees
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it describes, thus subtyping is inclusion of regular languages. XDuce, however, does not
have higher-order functions, and the type system does not include functional types.

The XDuce type system was extended to include arrow types, as well as intersection
and negation types, in the language CDuce [Benzaken et al. 2003]. In CDuce, Boolean
combinations of types can still be used, and intersections of arrow types are interpreted
as the type of overloaded functions (which produce a result of a different type depending
on the type of their argument). Extending the set-theoretic interpretation of types
accordingly, so that subtyping still corresponds to inclusion of interpretations, turns
out to be nontrivial. The recipe for managing it is explained by Frisch et al. [2008]; we
summarize it, with a slightly different focus than the original paper, in Section 2.

More recently, Hosoya et al. [2009] extended the XDuce type algebra with type
variables to support prenex parametric polymorphism. Again, doing the same in the
presence of arrow types was more difficult; a solution has been proposed by Castagna
and Xu [2011].

In the works of Frisch et al. [2008] and Castagna and Xu [2011], algorithms used
to decide the subtyping relations rely on arrow elimination. It is well known that in
a sensible subtyping relation, τ1 → τ2 � τ ′

1 → τ ′
2 is equivalent to the conjunction

of τ ′
1 � τ1 and τ2 � τ ′

2, so that a subtyping decision problem involving arrows can
be reduced to two problems not involving arrows. It gets more complicated than this
example when intersections of arrow types are allowed, but it can still be done. In
general, very schematically, the algorithms rely on a coinductive definition of the rela-
tion, in which subtyping between complex types is related to subtyping between their
components. For recursive types, subtyping holds if, no matter how far the types are
traversed, no contradiction is ever reached. It thus involves traversing constructors
and distinguishing cases repeatedly. Because of that, adding new constructs to the
type algebra mechanically complicates the algorithm: for example, the algorithm of
Castagna and Xu [2011] behaves like the one of Frisch et al. [2008] for monomorphic
types, but contains new rules for variable elimination in various cases depending on
where they occur in the type. These additions were not easy to define and obscure the
algorithm enough that proving that it terminated in all cases was difficult—it was, in
fact, still unproven when we first implemented the decision procedure that we present
here—and its complexity is still unknown.

An interesting thing to note in these seminal works about semantic subtyping is
that, while the set-theoretic interpretation of types is used to give some insight and
theoretical backing to the subtyping relation, it does not play as fundamental a role
as we may think in practical applications—one does not need the semantic subtyping
theoretical development to use or even to understand the relation τ1 → τ2 � τ ′

1 → τ ′
2 ⇔

τ ′
1 � τ1 ∧ τ2 � τ ′

2 after all, and the algorithm relies mostly on such transformations.
Castagna and Xu [2011] and Frisch et al. [2008] actually present the proof that a model
of types can effectively be constructed as a way to justify that the subtyping relation
makes sense as it is, which is nice to have but would not be absolutely necessary.

In the present article, we show in some sense how to push the semantic approach
further, all the way into the decision algorithm—we could say that we present a seman-
tic approach to deciding semantic subtyping. We give the set-theoretic model of types
a practical use: types are translated into logical formulas describing precisely the set
of model elements corresponding to the type. A type being a subtype of another then
corresponds to the logical implication of the corresponding formulas being valid. We
show that domain elements can be represented by finite trees and that the formulas
corresponding to types can be written in a μ-calculus of finite trees for which we have
an efficient satisfiability checker. Deciding subtyping between two types can then be
done by feeding to this checker the negation of the implication formula relating the two
types. If this formula is unsatisfiable, the implication is valid, thus subtyping holds;
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otherwise, we can exhibit explicitly a domain element that disproves the implication,
that is, which belongs to the first type but not the second.

A benefit of this fully logical approach is made clear in Section 5, in which we show
that extending the type algebra of Frisch et al. [2008] with type variables and altering
the subtyping relation accordingly, as described by Castagna and Xu [2011], can be
done in a very simple way and at effectively zero cost in our system. This, in turn,
immediately proves that subtyping is still decidable in the extended framework of
Castagna and Xu [2011], and gives a precise complexity bound for its decision, since
the translation into logic is linear and the complexity of the solver is known. This
complexity bound is one of our contributions, since no other proof of it currently exists.

1.1. Polymorphism and Subtyping: An Example

This work is motivated by a growing need for polymorphic type systems for program-
ming languages that manipulate XML data. For instance, XQuery [Boag et al. 2007]
is the standard functional language designed for querying collections of XML data.
The support of higher-order functions appears in the requirements for the XQuery 3.0
language [Robie et al. 2014]. This results in an increasing demand in algorithms for
proving or disproving statements with polymorphic types, and with types of higher-
order functions (such as the traditional map and fold functions).

For example, let us consider a simple property relating polymorphic types of functions
that manipulate lists. We consider a type α, and denote by [α] the type of lists whose
elements are of type α. These lists are classically represented by nested pairs, with the
empty list being represented by a special constant nil. We assume this constant has
its own type {nil} representing only itself (a “singleton type”). The type [α] can then be
defined recursively in the following way:

[α] = μv.{nil} ∨ (α × v),

where × denotes the Cartesian product and μ binds the variable v for denoting a
recursive type.

The type τ of functions that process an α list and return a Boolean is written as
follows:

τ = [α] → Bool

where Bool = {true, false} is the type containing only the two values true and false.
Now, let us consider functions that distinguish α lists of even length from α lists of
odd length: such a function returns true for lists with an even number of elements of
type α, and returns false for lists with an odd number of elements of type α. One may
represent the set of these functions by a type τ ′ written as follows:

even[α] → {true} ∧ odd[α] → {false},
where {true} and {false} are singleton types. If we make explicit the parametric types
even[α] and odd[α], τ ′ becomes:

τ ′ =
(

μv.(α × (α × v)) ∨ {nil} → {true}
∧ μv.(α × (α × v)) ∨ (α × {nil}) → {false}

)
.

Obviously, a particular function of type τ ′ can also be seen as a less-specific function
of type τ . In other words, from a practical point of view, a function of type τ can be
replaced by a more specific function of type τ ′ while preserving type safety (however,
the converse is not true). This is exactly captured by:

τ ′ � τ, (1)

where � denotes the subtyping relation that is examined in this article. We give more
examples in Section 6.
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1.2. Static Typing and Logical Solvers

During the last few years, there was been a growing interest in the use of logical solvers
such as satisfiability-testing solvers and satisfiability-modulo solvers in the context of
functional programming and static-type checking [Bierman et al. 2010; Benedikt and
Cheney 2010]. In particular, solvers for tree logics [Genevès et al. 2015] are used as
basic building blocks for type systems for XPath [Clark and DeRose 1999].

The main purpose of this article is to use a logical satisfiability solver for deciding
subtyping. To decide whether τ is a subtype of type τ ′, we first construct equivalent
logical formulas ϕτ and ϕτ ′ , then check the validity of the formula ψ = (ϕτ ⇒ ϕτ ′) by
testing the unsatisfiability of ¬ψ using the satisfiability-testing solver. This technique
corresponds to semantic subtyping [Frisch et al. 2008] since the underlying logic is
inherently tied to a set-theoretic interpretation. Semantic subtyping has been applied
to a wide variety of types, including refinement types [Bierman et al. 2010] and types
for XML such as regular tree types [Hosoya et al. 2005], function types [Benzaken et al.
2003], and XPath expressions [Genevès et al. 2007].

This fruitful connection between logics, their decision procedures, and programming
languages permits equipment of the programming languages with rich type systems
for sophisticated programming constructs such as expressive pattern matching and
querying techniques. The potential benefits of this interconnection crucially depend on
the expressivity of the underlying logics. Therefore, there is an increasing demand for
more and more expressiveness. For example, in the context of XML:

—SMT solvers such as the one by de Moura and Bjørner [2008] offer an expressive
power that corresponds to a fragment of first-order logic in order to solve the inter-
section problem between two queries [Benedikt and Cheney 2010];

—Full first-order logic solvers over finite trees solve containment and equivalence of
XPath expressions [Genevès et al. 2007];

—Monadic second-order logic solvers over trees and equivalent, yet much more effec-
tive, satisfiability solvers for μ-calculus over trees [Genevès et al. 2015] are used to
solve query containment problems in the presence of type constraints.

1.3. Contributions

The novelty of our work is threefold. It is the first work that:

—Proves the decidability of semantic subtyping for polymorphic types with function,
product, intersection, union, and complement types, as defined by Castagna and Xu
[2011], and gives a precise complexity upper bound: 2O(n), where n is the size of types
being checked. Decidability was only conjectured by Castagna and Xu before our
result, although they have now proved it independently; our result on complexity is
still the only one. In addition, we provide an effective implementation of the decision
procedure.

—Produces counterexamples whenever subtyping does not hold with polymorphic and
arrow types. These counterexamples are valuable for programmers as they represent
evidence that the relation does not hold.

—Pushes the integration between programming languages and logical solvers to a very
high level. The logic in use is not only capable of ranging over higher-order functions,
but it is also capable of expressing values from semantic domains that correspond
to monadic second-order logic such as XML tree types [Genevès et al. 2007]. This
shows that such solvers can become the core of XML-centric functional languages
type checkers such as those used in CDuce [Benzaken et al. 2003] or XDuce [Hosoya
and Pierce 2003].
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A preliminary version of this work was presented at the International Conference
on Functional Programming in 2011 [Gesbert et al. 2011]. This article extends and
improves that publication in the following ways:

—The type algebra that we consider is more expressive since all types definable in the
system of Castagna and Xu [2011] are now supported, whereas in our previous work
there were some restrictions on recursive types. In particular, our decision procedure
now decides subtyping between types such as μv.(v → α) ∧ β and μv.(v → α) ∨ β.
More examples of such types as well as subtyping relations between such types are
given in Section 6.3.

—Our results rely on an encoding of abstract values as trees. In the previous encoding,
those trees were unranked n-ary trees, which required introducing a form of zipper
[Huet 1997] to properly define the semantics of formulas. The encoding that we
present here uses binary trees instead, which removes the need for zippers and
therefore simplifies the whole presentation.

—The semantic subtyping framework of Frisch et al. [2008] is parameterized by a set of
basic constants, a set of basic types, and the interpretation of the latter in terms of the
former. Our previous translation of types into formulas assumed that it was possible
to represent basic constants as trees and basic types as formulas (which describe sets
of trees) but did not suggest a particular way of doing it. In this article, we present a
different approach, in which it is unnecessary to encode basic constants, basic types
are represented by abstract symbols, and the single parameter of the translation
is a Boolean formula called basic constraint describing the relations between basic
types. In this way, the parameter is explicit and the relation with the original type
language is more apparent.

—The previous encoding of arrow types contained a subtle error that is now corrected
(see footnote 3 on page 14 for details).

—The presentation is more detailed overall, and the article is more self-contained.

1.4. Outline

We introduce the semantic subtyping framework in Section 2, in which we start with
the monomorphic type algebra (without type variables). We present the tree logic in
which we model semantic subtyping in Section 3. We detail the logical encoding of types
in Section 4. In Section 5, we extend the type algebra with type variables, and state
the main result of the article: we show how to decide the subtyping relation for the
polymorphic case in exponential time. We report on practical experiments using the
implementation in Section 6. We discuss related work in Section 7 before presenting
concludions in Section 8.

2. SEMANTIC SUBTYPING FRAMEWORK

In this section, we present the type algebra that we consider: we introduce its syntax
and define its semantics using a set-theoretic interpretation. This framework is the
one described at length by Frisch et al. [2008]; we summarize its main features and
give the intuitions behind it, using a slightly different point of view than the original
article, but refer the reader to that article for technical details.

We will then extend this framework with type variables in Section 5.

2.1. Types

Types are defined starting from a finite set B of basic types, ranged over by b. Typically,
these basic types would include things such as integer, character, and some singleton
types such as true or false, representing abstract constants used to build enumerated
types.
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Type terms are defined using the following grammar:

τ ::=
b basic type

| τ × τ product type
| τ → τ function type
| τ ∨ τ union type
| ¬τ complement type
| 0 empty type
| v recursion variable
| μv.τ recursive type

We consider μ as a binder and define the notions of free and bound variables and closed
terms as standard. A type is a closed type term that is well formed in the sense that
every occurrence of a recursion variable is separated from its binder by at least one
occurrence of the product or arrow constructor (guarded recursion).

Thus, for example, μv.0 ∨ v is not well formed, nor is μv.¬v.
Types include, for example, the type of Booleans, true∨ false, or the type of integer

lists, μv.(nil ∨ (integer × v)) (where we assume nil is a singleton type).
Additionally, the following abbreviations are defined:

τ1 ∧ τ2 = ¬(¬τ1 ∨ ¬τ2)

and

1 = ¬0.

2.2. Set-Theoretic Interpretation

2.2.1. Underlying Ideas. Before formally defining how types shall be interpreted, let us
summarize the ideas that led to that interpretation.

Consider a programming language whose values are constants from a set C, pairs of
values, and functions. We consider the different kinds of values disjoint, for example,
no value can simultaneously be a pair and a function. Let W be the set of all values in
the language. The basic idea of the semantic subtyping framework is to interpret the
types of the algebra presented earlier as subsets of W, giving ∨ and ¬ the meaning
of set-theoretic union and complement, and to define subtyping as set inclusion of
interpretations.

Suppose that we have an interpretation of base types b as sets of constants. As long
as we do not use arrows, it is straightforward to define a set-theoretic semantics for ×.
The recursive type μv.τ can be interpreted as a least fixpoint.

The usual interpretation of a function type, however, is operational rather than set-
theoretic. Indeed, we can consider, in the general case, that when applying a function to
an argument, a computation is triggered that can, possibly nondeterministically, either
yield a value, yield an error, or yield nothing (i.e., not terminate). The intended meaning
of the type τ1 → τ2 is that, whenever applied to an argument of type τ1, the function
returns either a value of type τ2 or nothing. An important feature of this framework is
that it allows overloaded functions: a function f can return something of type τ2 when
given an argument of type τ1, and return something of the completely different type
τ3 when given an argument of type τ4. In that case, f has both type τ1 → τ2 and type
τ4 → τ3, and since the type algebra allows Boolean combinations of types, it also has
type τ1 → τ2 ∧ τ4 → τ3, which is more precise than each simple arrow type.

This operational definition of arrow types makes it impractical to interpret them
as sets of actual function values defined in the considered language. Rather, Frisch
et al. [2008] propose using the associated abstract functions, that is, sets of pairs
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of an antecedent and a result. Note that, because the computational functions are
allowed to be nondeterministic, the abstract ones are not necessarily functions in the
mathematical sense but more general relations. Formally, an abstract function is a
subset of W × (W ∪{�}), where � is not a value of the language but represents an error.
Each pair (d, d′) in the set means that, when given d as an argument, the function may
yield d′ as a result. If d does not appear as the first element of any pair, the operational
interpretation is that the function can still accept d as an argument but will not yield a
result: this represents a computation that does not terminate. A pair of the form (d,�)
is used to represent a function rejecting d as an argument: when given d, it yields an
error.

The denotation of type τ1 → τ2 can then be defined simply as all sets of pairs (d, d′)
such that, whenever d is of type τ1, d′ is of type τ2. Frisch et al. [2008] call this the
extensional interpretation of function types. Formally:

E�τ1 → τ2� = {S ⊆ W × (W ∪ {�}) | ∀(d, d′) ∈ S, (d : τ1) ⇒ (d′ : τ2)},
where (d : τ ) means that the value d has type τ . Boolean combinators can be inter-
preted as the corresponding set-theoretic operations on extensional interpretations1,
and subtyping corresponds to inclusion between sets of abstract functions.

This extensional interpretation has the problem that not all abstract functions can
have concrete implementations in the language, for cardinality reasons: the set of
concrete functions is included in W since they are values themselves, but the set of
all possible abstract functions is P(W × (W ∪ {�})). However, inclusion between the
extensional interpretations of two types clearly implies inclusion between the sets of
values of those types. For the converse implication to hold, it suffices that every type
whose extensional interpretation is nonempty has a witness in the language. Because
we have Boolean combinators in the type algebra, the question of inclusion reduces to
a question of emptiness.

It is not immediately obvious that we can find a language such that, whenever there
exists an abstract function of some type, there is also a function of that type in the
language. However, the following property makes it easy to define such a language:
whenever there exists an abstract function of some type, there also exists a finite
abstract function (i.e., the set of pairs is finite) of the same type [Frisch et al. 2008,
Lemma 6.32]. To get an intuition of why this is true, note that for an abstract function
to have type τ1 → τ2, it suffices that it contains no pair (a, b) with (a : τ1) and (b : ¬τ2).
For it to have type ¬(τ1 → τ2), it suffices that it contains one such pair. Since the type
algebra only allows finite Boolean combinations of types, it is impossible to build a type
constraint that would be satisfied only by infinite sets of pairs.

Therefore, if we consider an abstract language in which function values are simply
finite lists2 of pairs of values, with the semantics described earlier, the semantic sub-
typing relation it induces on types is the same as any sufficiently expressive concrete
language with the same set of base constants. We now define formally our semantic
domain.

2.2.2. Formal Definitions. Consider an arbitrary set C of constants. From it, we define
the semantic domain D as the set of ds generated by the following grammar, where c

1The attentive reader may remark that the complement of an arrow type includes not just all functions that
do not have that type but also all nonfunctional values. In the full formal development of Frisch et al. [2008],
the extensional interpretation of a type is actually a subset of the disjoint union of nonfunctional values and
abstract functions, so that this is taken into account.
2Using lists of pairs rather than sets of pairs allows a much simpler inductive definition of abstract values
and changes nothing in the theory. It simply means that several different values represent functions with
exactly the same behavior.
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ranges over constants in C:

d ::= domain element
c base constant

| (d, d) pair
| f function

f ::= function
[] diverging function (empty list)

| ((d, d′) :: f ) finite function (list of pairs)
d′ ::= function result

d domain element
| � error

We suppose that we have an interpretation B�·� : B → P(C) of basic types b as sets of
constants.

To define the semantics of types, we first define the following predicate:

Definition 2.1 (Typing Relation). The predicate (d′ : τ ), where d′ is either � or an
element d of D and τ is a type, is defined recursively in the following way:

(� : τ ) = false
(c : b) = c ∈ B�b�

((d1, d2) : τ1 × τ2) = (d1 : τ1) ∧ (d2 : τ2)
([] : τ1 → τ2) = true

(((d, d′) :: f ) : τ1 → τ2) = ((d : τ1) ⇒ (d′ : τ2)) ∧ (f : τ1 → τ2)
(d : τ1 ∨ τ2) = (d : τ1) ∨ (d : τ2)

(d : ¬τ ) = ¬(d : τ ) (d �= �)
(d : μv.τ ) = (d : τ {μv.τ/v})

(d : τ ) = false in any other case

LEMMA 2.2. This definition is well founded.

PROOF. To prove that this definition is well founded, we define a structural ordering
relation � on (D ∪ {�}) × T , where T is the set of types:

—On D ∪ {�}, we use the ordering d′
1 � d′

2 if d′
1 is a subterm of d′

2;
—Let the shallow depth of a type term be the longest path in its syntactic tree, starting

from the root and consisting only of μ, ∨, and ¬ nodes. We order types by τ1 � τ2 if
the shallow depth of τ1 is less than the shallow depth of τ2;

—Pairs are ordered lexicographically, that is, (d′
1, τ1) � (d′

2, τ2) if either d′
1 
 d′

2 or d′
1 = d′

2
and τ1 � τ2.

Recall the well-formedness constraint on types : in the syntactic tree, a recursion
variable is always separated from its binder by a × or → constructor. This implies that
the unfolding of a recursive type always has a strictly smaller shallow depth than the
original type: μv.τ � τ {μv.τ/v}; indeed, the substitution may increase the depth of the
syntactic tree, but only below a × of → node, thus it does not affect its shallow depth.

It is now easy to check that all occurrences of the predicate on the right-hand side of
the definition are for pairs strictly smaller with respect to � than the one on the left.
Because all terms and types are finite, this makes the definition well founded.

Example 2.3. Consider the value d = (2, nil) where 2 has base type int and nil is
the only value of type nil. Let τ = μv.nil ∨ (int × v). We can compute (d : τ ) in the
following way:
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—Unfolding: (d : τ ) = (d : nil ∨ (int × τ ))
—Disjunction: d /∈ C, therefore (d : nil) = false since nil is a base type.

Thus, (d : τ ) = (d : int × τ ).
—Pair deconstruction: (2 : int) = true (since 2 ∈ B�int�), therefore (d : τ ) = (nil : τ )
—Unfolding: (d : τ ) = (nil : nil ∨ (int × τ ))
—Disjunction: (nil : nil) = true, therefore (d : τ ) = true.

Definition 2.4 (Interpretation of Types). The interpretation of types as parts of D is
defined as �τ� = {d | (d : τ )}. Note that � is not part of any type, as expected.

We can now give the standard definition of semantic subtyping.

Definition 2.5 (Subtyping). The subtyping relation is defined as:

τ1 � τ2 ⇔ �τ1� ⊆ �τ2�

or, equivalently, �τ1 ∧ ¬τ2� = ∅.

3. TREE LOGIC FRAMEWORK

In this section, we introduce the logic in which we model the semantic subtyping
framework. This logic is a subset of the one described by Genevès et al. [2015]: a
variant of μ-calculus whose models are finite binary trees.

Data model. Let � be a set of labels, ranged over by ζ . We consider binary trees in
which each node bears a finite number of labels; we use L to range over finite sets of
labels. The syntax of our data model is as follows.

t ::= (L, st, st) binary tree
st ::= t | ε subtree

We write T for the set of trees generated by this grammar.

Logic formulas. The logic language that we use allows describing properties of such
trees. In addition to standard Boolean connectives, it comprises atomic propositions ζ ,
indicating that the label ζ is present at the root; existential modalities〈1〉 and 〈2〉 stating
the existence of a nonempty left (first) or right (second) subtree, respectively, satisfying
some formula; and a polyadic fixpoint binder μ to express recursion.

We use the letter a to range over {1, 2}, the two possible directions of navigation.
The syntax of formulas is formally defined as follows:

ϕ,ψ ::= formula
� | ⊥ true, false

| ζ | ¬ζ atomic proposition (negated)
| X fixpoint variable
| ϕ ∨ ψ disjunction
| ϕ ∧ ψ conjunction
| 〈a〉 ϕ | ¬ 〈a〉 � existential modality (negated)
| μ(Xi = ϕi)i∈I in ψ (least) polyadic fix point

The polyadic fixpoint is a way of defining a set of mutually recursive formulas. As
an additional constraint, we require this recursion to be guarded by modalities, that
is, the formula μ(Xi = ϕi)i∈I in ψ must be such that all occurrences of the Xi in the ϕ j
appear in subformulas starting with a modality 〈a〉.

Interpretation of formulas. The interpretation of formulas as subsets of T is defined
in Figure 1, where V is a valuation, that is, a mapping from fix point variables to
subsets of T . When ϕ is closed, its interpretation is independent of V ; in that case, we
simply write it �ϕ�.
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Fig. 1. Interpretation of formulas.

The interpretation of fixpoint formulas may seem complicated. It is standard, how-
ever, and corresponds to a least prefixpoint; it allows giving a definition before having
proved that a fixpoint exists and is unique. In our case, with this logic language and
this interpretation, we actually know that there is a unique fixpoint. This is expressed
formally by the following property, which we will use instead of the definition:

PROPERTY 3.1. Let μ(Xi = ϕi)i∈I in ψ be a fixpoint formula. Then there exists a unique
tuple (Ui)i∈I of parts of T such that: ∀ j ∈ I, �ϕ j�V [Xi �→Ui ] = U j. We call Xi �→ Ui the
fixpoint valuation of the formula, and we have �μ(Xi = ϕi)i∈I in ψ�V = �ψ�V [Xi �→Ui ].

This property is a consequence of a more general result from Genevès et al. [2015]
on cycle-free formulas. The cycle-freeness constraint defined in that article translates
as the guarded-recursion constraint in the sublanguage that we use here. We refer the
reader to that article for the proof.

Syntactic sugar. In addition to what the syntax generates, we use some abbreviations.
We write μX.ϕ for μ(X = ϕ) in X. The universal modalities [a] are defined by: [a] ϕ =
¬〈a〉 �∨〈a〉 ϕ (“If there is an a subtree, then it satisfies ϕ”). When ϕ is a closed formula,
¬ϕ can also be defined as an abbreviation for the neg(·) operation in Definition 3.2.

Definition 3.2 (Negation of a Formula). The negation of a formula in general (pos-
sibly containing free variables) is not defined. To define it for closed formulas, we use
the following neg(·) operation. This operation is defined inductively on all formulas;
however, it only represents negation when its argument is a closed formula.

neg(ζ ) = ¬ζ neg(〈a〉 ϕ) = [a] neg(ϕ)
neg(�) = ⊥ neg(⊥) = �

neg(ϕ ∨ ψ) = neg(ϕ) ∧ neg(ψ) neg(ϕ ∧ ψ) = neg(ϕ) ∨ neg(ψ)
neg(¬ϕ) = ϕ neg(X) = X

neg(μ(Xi = ϕi)i∈I in ψ) = μ(Xi = neg(ϕi))i∈I in neg(ψ)

PROPERTY 3.3. If ϕ is a closed formula, �neg(ϕ)� = T \ �ϕ�.
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PROOF. For any valuation V , we define its complement valuation ¬V by (¬V )(X) =
T \ V (X). We can then prove by a structural induction that for any formula ψ and
any V , we have �neg(ψ)�V = T \ �ψ�¬V . The induction is straightforward (it relies on
Property 3.1 in the fixpoint case). The property that we stated is then just the particular
case in which ψ is closed.

When ϕ is closed, we write ¬ϕ for neg(ϕ).

4. LOGICAL ENCODING

In the context of this article, we want finite tree models of the logic to correspond to
the domain elements d introduced in Section 2 so that we can associate to each type
a formula whose set of models corresponds to the denotation of the type. Thus, we
first choose an appropriate alphabet � of node labels and a representation of domain
elements. Then, we present the translation of a type into a logical formula.

4.1. Representation of Domain Elements

We now describe a way to represent elements of our semantic domain D as trees so that
we can reason on D using our tree logic. The first step is to represent constants from C;
but C is arbitrary in the semantic subtyping framework. However, our purpose is just
to decide subtyping. For this purpose, it is not useful to distinguish values that belong
to exactly the same types. We therefore associate to each basic type b a tree label lbl(b),
and associate to each constant from C a leaf node bearing the labels corresponding to
all the basic types to which it belongs:

tree(c) = ({lbl(b) | c ∈ B�b�}, ε, ε).

Now that we have a representation of constants as leaves, we associate to each type
constructor a specific tree label: �→ for arrow and �× for product, to which we add �� for
the error value �. We suppose that all the lbl(b) are different from these three labels
and from each other. If we assume that � comprises all these labels, we can define the
following injective translation tree from D ∪ {�} ∪ (D × (D ∪ {�})) to T :

tree(c) = ({lbl(b) | c ∈ B�b�}, ε, ε)
tree(�) = ({�� }, ε, ε)

tree((d, d′)) = ({�× }, tree(d), tree(d′))
tree([]) = ({�→}, ε, ε)

tree(((d, d′) :: f )) = ({�→}, tree((d, d′)), tree(f ))

The intuition of this tree representation is illustrated in Figure 2.

4.2. Translation of Types

We now assume that � = {lbl(b) | b ∈ B} ∪ {�� , �→, �× }.
Now that domain values are represented by trees, we can represent types, which

denote sets of domain values, with formulas that denote sets of trees. But as a prelim-
inary, since not all trees are the representation of a domain value, we need a formula
describing exactly the image of D by function tree so that we can easily exclude trees
corresponding to nothing.

This first requires a formula that describes the image of C; let us call this formula
isbase. The actual formula depends on the language considered, and more precisely
on the set-theoretic relations between the basic types’ denotations. We know that a
basic constant is represented by a leaf that bears only labels of the form lbl(b), but,
additionally, we need to know which combinations of basic types are possible (i.e., have
a nonempty denotation) and which are not.
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Fig. 2. Pairs and functions are represented as trees with special labels.

The semantic subtyping framework is parametric on the set of constants C and the
set-theoretic interpretation B�·� of basic types. What really matters in these param-
eters with respect to the subtyping relation is this: among all intersections of basic
types and negations of basic types, which ones are empty and which ones are not? Let
basic constraint be a Boolean formula of atomic propositions lbl(b) that describes exactly
the set of possible combinations of basic types, as determined by B�·�. This formula is
the only parameter of the logical translation of the framework.

Formally, this formula is linked to C and B�·� in the following way:

Definition 4.1. basic constraint is a formula comprising only atomic propositions and
Boolean connectors such that:

�basic constraint� = {(L, st1, st2) ∈ T | ∃c ∈ C,∀b ∈ B, lbl(b) ∈ L ⇔ c ∈ B�b�}.
Since B is finite, such a formula always exists: it can be obtained by enumerating all

nonempty combinations of basic types.
In practice, in programming languages, two basic types are usually either in a subtyp-

ing relation or completely disjoint (which corresponds to a subtyping relation between
one and the negation of the other). This can be encoded by a conjunction of clauses that
relate two consecutive types, together with one clause to ensure that every constant
has at least one basic type.

As an example, suppose that the basic types are integer, natural, and string. The
usual relations between these types are: natural is a (strict) subtype of integer, and
string is completely disjoint. Let s = lbl(string), n = lbl(natural), i = lbl(integer). In
this case, the formula would be: basic constraint = (¬n ∨ i) ∧ (¬s ∨ ¬i) ∧ (s ∨ i). We
could also imagine that we use a language in which automatic conversion occurs, as
needed, between strings and integers. Since there are strings that do not represent
integers, but any integer can be represented by a string (thus, in our small example,
all constants can be represented by strings), we would simply change the formula into
basic constraint = (¬n∨ i)∧s. If we add a type alphabetic limited to strings comprising
only letters, the type string would then have two disjoint subtypes, which we could
encode as basic constraint = (¬n ∨ i) ∧ (¬i ∨ ¬a) ∧ s.

From the formula basic constraint, we can define the formulas of Figure 3 to describe
the image of D. The first formulas are used to enforce the labelling constraints (special
labels are mutually exclusive and incompatible with the base types). Then isbase
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Fig. 3. Formulas describing different parts of the image set of a function tree.

selects all trees corresponding to constants from C. error is straightforward. isd selects
all elements of D: either they are a constant or a pair (a �× node with exactly two
children, each of which is itself in D), or a function: a �→ node with either no children
at all or a first child, which is a pair whose second element may be error and a second
child, which is itself a function. Altogether, we have the following lemma:

LEMMA 4.2. �isd� = {tree(d) | d ∈ D}.
PROOF. Using the definition of the interpretation of formulas, we have that:

(1) �notbase� = {(L, st1, st2) ∈ T | L ⊆ {�� , �→, �× }} (from how � was defined);
(2) �isleaf� = {(L, ε, ε) ∈ T };
(3) �prod� = {({�× }, st1, st2) ∈ T } (from (1));
(4) �arrow� = {({�→}, st1, st2) ∈ T } (from (1));
(5) �isbase� = {tree(c) | c ∈ C} (from Definition 4.1 and (2));
(6) �error� = {tree(�)} (from (1) and (2)).

Then, let U = {tree(d) | d ∈ D} and U ′ = {tree(f ) | f ∈ D is a function}. Let V = {X �→
U, Y �→ U ′}. Let ψ and ϕ be the subformulas, respectively, bound to X and Y in isd. We
can check, from all the preceding, that:

—�arrow ∧ isleaf� = {tree([])};
—�prod ∧ 〈1〉 X ∧ 〈2〉 (X ∨ error)�V = {tree((d, d′)) | d ∈ D and d′ ∈ D ∪ {�}};
—therefore, �ϕ�V = U ′ (from the two cases of the definition of tree for abstract

functions);
—hence, U ′ is the fixpoint valuation for Y , thus �μY.ϕ�{X�→U } = U ′ (from Property 3.1);
—in ψ , the other two terms in the disjunction correspond, respectively, to the set of all

base constants (see (5)) and to the set of all pairs (d, d′) such that both d and d′ are
in D;

—therefore, �ψ�{X�→U } = U , thus U is the fixpoint valuation for X and �μX.ψ� = U .

We can now define formulas corresponding to the types themselves. The type lan-
guage allows recursion variables to appear in contravariant positions, which is not
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Fig. 4. Translation from types to formulas.

permitted in the μ-calculus. To account for that, we translate recursive types with a
pair of mutually recursive formulas, one representing the type and the other its nega-
tion. Note that, in most cases, the formulas will actually not be mutually recursive and
only one of the two will be used. However, it is simpler to define a translation that
works in all cases and can be simplified afterwards by removing unused subformulas
than to distinguish particular cases in the definition.

To each recursion variable v, we associate a pair of μ-calculus fixpoint variables X+
v

and X−
v , which are all distinct from each other and from Y . We then associate to every

type τ the formula fullform(τ ) = isd ∧ form(τ ), with form(τ ) defined in Figure 4.
The translation of product types is simple: it describes a �× node whose first child is

described by form(τ1) and whose second child is described by form(τ2). The translation
of arrow types describes a �→ node whose right child, if it exists, has the same structure
as itself recursively and whose left child, if it exists, must be a node with two children
such that either the first does not have type τ1 (negform(τ1)) or the second has type τ2
(¬�� ∧ form(τ2)). This is the only place in this translation in which we have to specify
that a node must not be labelled �� , because everywhere else it is already enforced by
isd3. On this particular node, given the constraints implied by isd, adding the constraint
¬�� is sufficient to say that it must correspond to an element of D. There are some other
constraints that are already enforced by isd and need not be repeated here, such as the
facts that an arrow node must have exactly zero or two children, or that its left child
must have label �× .

3A former version of our encoding erroneously omitted ¬�� at this point, because it does not appear explicitly
in (d : τ1) ⇒ (d′ : τ2), which is what we are translating here. However, it does appear implicitly in the fact
that d′ ranges over D ∪ {�} and that (d′ : τ2) is always false if d′ = �.
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Notice that, in this translation, μv.τ is directly translated as a fixpoint formula with
two variables. Since τ might itself contain a recursive type, the size of the obtained
formula may not be optimal: in the worst case, it can be exponentially larger than the
size of the types. To avoid this problem, one could employ an alternative translation
using a single polyadic fixpoint for the whole initial type binding all variables at once,
as discussed in Section 5.4. Nevertheless, we prefer the earlier definition for clarity.

LEMMA 4.3. If τ is closed, then so are negform(τ ) and form(τ ), and we have
�negform(τ )� = �¬form(τ )�.

PROOF. By a straightforward induction, we can see that for any (possibly open) type
τ , the formulas negform(τ ) and neg(form(τ )) are almost identical, the only difference
being that the variables X+

v and X−
v are exchanged for all v. Since replacing every X+

v

with X−
v and vice versa is an injective renaming of variables, it has no effect if all the

variables are bound. Therefore, in that case, the two formulas are equivalent.

Correctness of the translation. For any closed type τ , we have:

�fullform(τ )� = {tree(d) | d ∈ �τ�}.
This property will be formally proved for polymorphic types in the next section
(Theorem 5.6). The proof in the monomorphic case is the same with one less case.

The main consequence of this property is that a type τ is empty if and only if
the interpretation of the corresponding formula is empty—which is equivalent to the
formula being unsatisfiable. Because there exists a satisfiability-checking algorithm
for this tree logic [Genevès et al. 2015], this means that this translation gives an
alternative way to decide the classical semantic subtyping relation as defined by Frisch
et al. [2008]. More interestingly, it yields a decision procedure for the subtyping relation
in the polymorphic case as well, as we will explain in the next section.

5. POLYMORPHISM: SUPPORTING TYPE VARIABLES

So far, we have described a new, logic-based approach to a question—semantic sub-
typing in the presence of intersection, negation, and arrow types—which had already
been studied. We now show how this new approach allows us, in a very natural way,
to encompass the latest work by adding polymorphism to the types along the lines of
Castagna and Xu [2011].

We add to the syntax of types variables, α, β, γ taken from a countable set V. If τ is
a polymorphic type, we write var(τ ) to indicate the set of variables it contains and call
ground type a type with no variable. We sometimes write τ (α) to indicate that var(τ ) is
included in α.

Note that we consider only prenex (ML-style) parametric polymorphism [Milner et al.
1975], not higher-rank polymorphism, thus there are no quantifiers in the syntax of
types.

5.1. Subtyping in the Polymorphic Case: A Problem of Definition

Before defining formal interpretations for polymorphic types, we briefly review how ex-
tending the semantic subtyping framework to the polymorphic case has been addressed
in previous work.

The intuition of subtyping in the presence of type variables is that τ1(α) � τ2(α)
should hold true whenever, independently of the variables α, any value of type τ1 has
type τ2 as well. However, the correct definition of “independently” is not obvious. It
should look like this:

∀α, �τ1(α)� ⊆ �τ2(α)�,

ACM Transactions on Programming Languages and Systems, Vol. 38, No. 1, Article 3, Publication date: October 2015.



3:16 N. Gesbert et al.

but because variables are abstractions, it is not completely clear over what to quantify
them. As mentioned by Hosoya et al. [2009], a candidate—naive—definition would use
ground substitutions, that is, if the inclusion of interpretations always holds when
variables are replaced with ground types, then the subtyping relation holds:

τ1(α) � τ2(α) ⇔ ∀τ ground types, �τ1(τ/α)� ⊆ �τ2(τ/α)�. (2)

Obviously, the condition on the right is necessary for subtyping to hold. But deciding
that it is sufficient as well makes the relation unsatisfactory and somehow counterin-
tuitive, as remarked by Hosoya et al. [2009]. Suppose that int is an indivisible type,
that is, that it has no subtype beside 0 and itself. Then, the following would hold:

int × α � (int × ¬int) ∨ (α × int). (3)

This relation conforms to the definition because of the fact that, for any ground type τ ,
either �int� ⊆ �τ� or �τ� ⊆ �¬int�. In the first case, because �τ� ⊆ (�¬int� ∪ �int�), we have
�int × τ� ⊆ �int × ¬int� ∪ �int × int�; then, the second member of the union is included in
�τ × int�. In the second case, we directly have �int × τ� ⊆ �int × ¬int�.

This trick, which only works with indivisible ground types, not only shows that
candidate definition (Definition (2)) yields bizarre relations where a variable occurs in
unrelated positions on both sides. It also means that the candidate definition is very
sensitive to the precise semantics of base types, since it distinguishes indivisible types
from others. More precisely, it means that refining the collection of base types, for
example, by adding types even and odd, can break subtyping relations that held true
without these new types—this is simply due to the fact that it increases the set over
which τ is quantified in Definition (2), making the relation stricter. This could hardly
be considered a desirable feature of the subtyping relation.

The conclusion is that the types in Definition (3) should be considered related by
chance rather than by necessity, hence not in the subtyping relation, and that quan-
tifying over all possible ground types is not enough; in other words, candidate Defini-
tion (2) is too weak and does not properly reflect the intuition of “independently of the
variables.” Indeed, Definition (3) is, in fact, dependent on the variable, as we saw, the
point being that there are only two cases and that the convoluted right-hand type is
crafted so that the relation holds in both, though for different reasons.

In order to restrict the definition of subtyping, Hosoya et al. [2009], who concentrate
on XML types, use a notion of marking: some parts of a value can be marked (using
paths) as corresponding to a variable, and the relation “a value has a type” is changed
into “a marked value matches a type,” thus the semantics of a type is not a set of values
but of pairs of a value and a marking. This is designed so that it integrates well in the
XDuce language, which has pattern-matching but no higher-order functions (hence, no
arrow types); thus their system is tied to the operational semantics of matching and
provides only a partial solution.

The question of finding the correct definition of semantic subtyping in the polymor-
phic case was finally settled by Castagna and Xu [2011]. Their definition does, in the
same way as in Definition (2), follow the idea of a universal quantification over pos-
sible meanings of variables but solves the problem raised by Definition (3) by using a
much larger set of possible meanings—thus yielding a stricter relation. More precisely,
variables are allowed to represent not just ground types but any arbitrary part of the
semantic domain; furthermore, the semantic domain itself must be large enough, which
is embodied by the notion of convexity. We refer the reader to Castagna and Xu [2011]
for a detailed discussion of this property and its relation to the notion of parametricity
studied by Reynolds [1983]. Here, we will limit ourselves to introducing the definitions
strictly necessary for the discussion at hand.
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In this work, we do not use this definition with its universal quantification directly.
Rather, we retain from Hosoya et al. [2009] the idea of tagging (pieces of) values that
correspond to variables, but do so in a more abstract way, by extending the semantic
domain, and define a fixed interpretation of polymorphic types in this extended domain
as a straightforward extension of the monomorphic framework. We then show how
to build a set-theoretic model of polymorphic types, based on the work of Castagna
and Xu [2011], based on this domain, and prove that the inclusion relation on fixed
interpretations is equivalent to the full subtyping relation induced by this model.
Finally, we explain briefly the notion of convexity and show that this model is convex,
implying that this relation is the semantic subtyping relation on polymorphic types
defined by Castagna and Xu [2011]. These steps are formally detailed in the following
section.

5.2. Interpretation of Polymorphic Types

5.2.1. Extended Semantic Domain. Let � be an infinite set of tags, disjoint from {lbl(b) |
b ∈ B}∪{�� , �→, �× }, and ι an injective function from the set of variables V to �. (It would
be possible to set � = V, but for clarity we prefer to distinguish tags that tag elements
of the semantic domain from variables that occur in types.)

In the following, we let λ range over finite parts of �. We define the extended semantic
domain D∗ by allowing every syntactic node of domain elements to be tagged with an
arbitrary λ. Formally, this corresponds to the set of δs generated by the following
grammar:

δ ::= tagged domain element
cλ tagged base constant

| (δ, δ)λ tagged pair
| fλ tagged function

f ::=
[]

| ((δ, δ′)λ :: fλ)
δ′ ::=

δ
| �λ tagged error

For δ in D∗, let tags(δ) be the top-level tags of δ, that is:

tags(cλ) = λ

tags((δ1, δ2)λ) = λ

tags(fλ) = λ

Remark 5.1. The error � may be tagged, and the head and tail of a list representing
an abstract function may be tagged separately from the list itself for regularity reasons;
having them untagged would complicate the translation into logic that we will present
in Section 5.3. However, since they do not represent domain elements themselves but
mere intermediate nodes in the syntactic tree, their tags are actually irrelevant.

5.2.2. Fixed Interpretation of Polymorphic Types. We now define an interpretation of poly-
morphic types as subsets of D∗, very similar to what we did for monomorphic types,
with just an additional case for the type variable:
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Definition 5.2 (Typing Relation for Polymorphic Types). The predicate (δ′ : τ ) is
defined recursively in the following way:

(�λ : τ ) = false
(cλ : b) = c ∈ B�b�

((δ1, δ2)λ : τ1 × τ2) = (δ1 : τ1) ∧ (δ2 : τ2)
([]λ : τ1 → τ2) = true

(((δ, δ′)λ :: fλ′ ) : τ1 → τ2) = ((δ : τ1) ⇒ (δ′ : τ2)) ∧ (fλ′ : τ1 → τ2)
(δ : α) = ι(α) ∈ tags(δ)

(δ : τ1 ∨ τ2) = (δ : τ1) ∨ (δ : τ2)
(δ : ¬τ ) = ¬(δ : τ )

(δ : μv.τ ) = (δ : τ {μv.τ/v})
(δ : τ ) = false in any other case

With a reasoning similar to the monomorphic case, this definition is well founded.
We define the interpretation of a polymorphic type as �τ � = {δ ∈ D∗ | (δ : τ )}.

For ground types, �τ � is very similar to �τ�, but the semantic domain is now much
larger. This means that the same definition leads to larger interpretations; in particular,
the interpretation of a (nonempty) ground type is always an infinite set that contains
all possible taggings for each of its values.

Subtyping over polymorphic types is then defined, as before, as set inclusion between
interpretations:

τ1(α) � τ2(α) ⇔ �τ1(α)� ⊆ �τ2(α)� (4)

It may seem strange to give type variables a fixed interpretation; on the other hand,
it may seem surprising that this definition of subtyping does not actually contain any
quantification and is nevertheless stronger than Definition (2), which contains one.
The key point is that a form of universal quantification is implicit in the extension
of the semantic domain: in some sense, the interpretation of a variable represents
all possible values of the variable at once. For any variable α and any value d in the
nonextended domain, there always exist both an infinity of tagged copies of d that are
in the interpretation of α and another infinity of copies that are not. From the point of
view of logical satisfiability, this makes the extended domain big enough to contain all
possible cases.

5.2.3. Equivalence with Castagna and Xu’s Definition of Subtyping. In this section, we prove
that our definition of subtyping for polymorphic types, Definition (4), is equivalent to
the one of Castagna and Xu [2011], thus accurately represents a relation that holds
independently of the variables. For this, we have to introduce a few additional notions
that Castagna and Xu’s framework relies on, notably a different interpretation of types
(on the same semantic domain). These notions are not used elsewhere; the development
in this section is meant to justify that defining subtyping with Definition (4) is correct,
and is quite separate from the rest of our formal development.

We first introduce assignments η: functions fromV toP(D∗). An assignment attributes
to each variable an arbitrary set of elements from the (extended) semantic domain.

We then define the interpretation of a type relative to an assignment in the following
way: the predicate (δ′ :η τ ) is defined inductively exactly as (δ′ : τ ) except for type
variables: where the fixed interpretation is (δ : α) = ι(α) ∈ tags(δ), we have instead:

(δ :η α) = δ ∈ η(α).
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The interpretation of the polymorphic type τ relative to the assignment η is then
�τ�η = {δ | (δ :η τ )}. This defines an infinity of possible interpretations for a type,
depending on the actual values assigned to the variables, and constitutes a set-theoretic
model of types in the sense of Castagna and Xu [2011]. The subtyping relation induced
by this model is the following:

τ1(α) � τ2(α) ⇔ ∀η ∈ P(D)V , �τ1(α)�η ⊆ �τ2(α)�η, (5)

which we can more easily compare to the candidate Definition (2): it does, in the same
way, quantify over possible meanings of the variables but uses a much larger set of
possible meanings, yielding a stricter relation. We will now prove that this relation is,
for our particular model, actually equivalent to Definition (4).

For this, let us first define the canonical assignment ηι as follows:

ηι(α) = {δ ∈ D∗ | ι(α) ∈ tags(δ)}.
This assignment is such that the fixed interpretation �τ � of a polymorphic type is the
same as its interpretation relative to the canonical assignment, �τ�ηι. What we would
like to prove is that the canonical assignment is somehow representative of all possible
assignments, making the fixed interpretation sufficient for the purpose of defining
subtyping. This is done by the following lemma and corollary.

LEMMA 5.3. Let V be a finite part of V. Let η be an assignment. Let T be the set of
all types τ such that var(τ ) ⊆ V . Then there exists a function Fη

V : D∗ → D∗ such that:
∀τ ∈ T ,∀δ ∈ D∗, δ ∈ �τ�η ⇔ Fη

V (δ) ∈ �τ�ηι.

PROOF. For δ in D∗, let L(δ) = {ι(α) | α ∈ V ∧δ ∈ η(α)}. Since V is finite, L(δ) is finite as
well. We define Fη

V (δ) inductively; in order to do that, we define it not just on elements
of D∗, but on intermediate syntactic nodes as well. On domain elements:

—If δ = cλ, then Fη

V (δ) = cL(δ)

—If δ = (δ1, δ2)λ, then Fη

V (δ) = (Fη

V (δ1), Fη

V (δ2))L(δ)

—If δ = fλ, then Fη

V (δ) = Fη

V (f )L(δ)

and on other syntactic nodes:

—Fη

V ([]) = []
—Fη

V (((δ1, δ
′
1)λ1 :: fλ2 )) = ((Fη

V (δ1), Fη

V (δ2))λ1 :: Fη

V (f )λ2 )
—Fη

V (�λ) = �λ

Thus Fη

V preserves the structure but changes the tags so that tags(Fη

V (δ)) = L(δ) and
so on inductively for its subterms. The tags of intermediate nodes are not changed4.

Let P(δ, τ ) = δ ∈ �τ�η ⇔ Fη

V (δ) ∈ �τ�ηι. We prove that this predicate holds for all pairs
(δ, τ ) such that τ is in T , by induction on those pairs, using the ordering relation �
defined in Section 2.2.2, noticing that τ ∈ T implies that all subterms (and unfoldings)
of τ are in T as well.

The base cases are:

—If τ is a variable, then it is in V by hypothesis and P(δ, τ ) is true by definition of L(δ).
—If it is a base type, then P(δ, τ ) is true because the interpretation of τ is independent

of assignments and of tags.

4As said in Remark 5.1, these tags are irrelevant.
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For the inductive cases, we suppose the property true for all strictly smaller pairs (δ, τ )
such that τ is in T .

—For the function and product cases, the inductive definition of Fη

V makes the result
straightforward.

—For the negation and disjunction cases, the result is immediate from the induction
hypothesis.

—For μv.τ , recall that the well-formedness constraint on types implies that the type’s
unfolding has a strictly smaller shallow depth than the original type; hence, we can
use the induction hypothesis on the unfolding and conclude.

COROLLARY 5.4. Let τ be a type.
⋃

η∈P(D∗)V �τ�η = ∅ if and only if �τ�ηι = ∅.

PROOF. If the union is not empty, there exist η and δ such that δ ∈ �τ�η. From the
previous lemma, we then have Fη

var(τ )(δ) ∈ �τ�ηι.

This corollary shows that the canonical assignment is representative of all possi-
ble assignments and implies that the subtyping relation defined by Definition (4) is
equivalent to the one defined by Definition (5). Indeed:

—Definition (4) tells us that τ1 � τ2 holds if and only if �τ1� ⊆ �τ2�, that is, if and only
if �τ1� \ �τ2� = �τ1 \ τ2� = ∅, and we know that �τ1 \ τ2� = �τ1 \ τ2�ηι.

—Definition (5) tells us that τ1 � τ2 holds if and only if for all η we have �τ1�η ⊆ �τ2�η,
that is, �τ1�η \ �τ2�η = �τ1 \ τ2�η = ∅. Saying that it is empty for all η is the same as
saying that the union is empty:

⋃
η∈P(D∗)V �τ1 \ τ2�η = ∅.

—Corollary 5.4 applied to τ = τ1 \ τ2 then proves that both are equivalent.

Convexity of the model. Definition (5) corresponds to semantic subtyping as defined by
Castagna and Xu [2011], but only on the condition that the underlying model of types be
convex. We can see that this definition is dependent on the set of possible assignments,
which itself depends on the chosen (abstract) semantic domain, thus it is reasonable
to think that increasing the semantic domain could restrict the relation further. In
other words, for the definition to be correct, the domain must be large enough to cover
all cases. Castagna and Xu’s convexity characterizes this notion of “large enough.”
The property is the following: a set-theoretic model of types is convex if, whenever a
finite collection of types τ1 to τn each possess a nonempty interpretation relative to
some assignment, then there exists a common assignment making all interpretations
nonempty at once. This reflects the idea that there are enough elements in the domain
to witness all the cases.

In our case, it comes as no surprise that the extended model of types is convex since
any nonempty ground type has an infinite interpretation, which, as proved by Castagna
and Xu [2011], is a sufficient condition. But we need not even rely on this result since
Corollary 5.4 proves a property even stronger than convexity: having a nonempty inter-
pretation relative to some assignment is the same as having a nonempty interpretation
relative to the common canonical assignment. This stronger property makes the appar-
ently weaker relation defined by Definition (4) equivalent, in our particular model, to
the full semantic subtyping relation Castagna and Xu defined. This allows us to reduce
the problem of deciding their relation to a question of inclusion between fixed inter-
pretations, making the addition of polymorphism a mostly straightforward extension
to the logical encoding we presented for the monomorphic case.

We now show how the type system extended with type variables is encoded in our
logic.
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5.3. Logical Encoding of Variables

5.3.1. Representation of Extended Domain Elements. In order to represent tags in our tree
language, we simply add to the alphabet � of tree labels the set � of tags:

� = {lbl(b) | b ∈ B} ∪ {�� , �→, �× } ∪ �.

The translation of extended domain elements into trees is then similar to what we
had in the monomorphic case; we simply add the encoding of labels:

treex(cλ) = (λ ∪ {lbl(b) | c ∈ B�b�}, ε, ε)
treex(�λ) = (λ ∪ {�� }, ε, ε)

treex((δ, δ′)λ) = (λ ∪ {�× }, treex(δ), treex(δ′))
treex([]λ) = (λ ∪ {�→}, ε, ε)

treex(((δ, δ′)λ1 :: fλ2 )λ) = (λ ∪ {�→}, treex((δ, δ′)λ1 ), treex(fλ2 ))

5.3.2. Representation of Polymorphic Types. The translation of types is the same as in the
monomorphic case; we just add an additional case for the type variable. In particular,
the formula isd is completely unchanged: the passage from D to D∗ is simply a conse-
quence of the fact that we extended � to include tags. Since isd contains no constraint
about these new labels, it means that every node of every tree in �isd� can bear any
number of them. Formally, we can easily adapt the proof of Lemma 4.2 to obtain:

LEMMA 5.5. �isd� = {treex(δ) | δ ∈ D∗}
The differences come from the fact that we now have:

(1) �notbase� = {(L, st1, st2) ∈ T | L is a finite subset of {�� , �→, �× } ∪ �} (because � now
contains �), and

(5) �isbase� = {treex(cλ) | c ∈ C and λ is a finite subset of �}, for the same reason.

These differences apply to the rest of the reasoning, which is otherwise unchanged.
The translation form(τ ) of types into formulas is extended by translating each type

variable into the atomic proposition denoting the tag associated with the variable:

form(α) = ι(α)
negform(α) = ¬ι(α)

The other cases are unchanged; in particular, the translation of a ground type is exactly
the same formula as in the monomorphic case. We then again define fullform(τ ) =
isd ∧ form(τ ), and get the following result:

THEOREM 5.6. For any closed type τ , �fullform(τ )� = {treex(δ) | δ ∈ �τ �}.
PROOF. First, Lemma 5.5 allows us to reformulate the statement as: �form(τ )� ∩

{treex(δ) | δ ∈ D∗} = {treex(δ) | δ ∈ �τ �}. Using the definition of �·� in terms of the
predicate (δ : τ ), we can further reformulate as follows:

For any closed type τ and any δ ∈ D∗, (δ : τ ) holds if and only if treex(δ) ∈ �form(τ )�.
We prove this result by induction on the pair (δ, τ ), using the ordering relation �. In

other words, in order to prove that the result is true for a given pair (δ, τ ), we assume
that it is true for all pairs (δ′, τ ′) such that either δ′ is a strict subterm of δ, or δ = δ′
and τ ′ has a strictly lower shallow depth than τ . We distinguish cases on the form of τ .

—τ = b : �form(b)� contains exactly all leaves that do not have any of the labels �→, �� ,
and �× , and have label lbl(b).

If δ is not of the form cλ, then (δ : b) does not hold. We also have that treex(δ) bears
either label �→ or �× at the root, thus treex(δ) /∈ �form(b)�.

ACM Transactions on Programming Languages and Systems, Vol. 38, No. 1, Article 3, Publication date: October 2015.



3:22 N. Gesbert et al.

If δ = cλ, let treex(cλ) = (L, ε, ε). We have treex(cλ) ∈ �form(b)� if and only if lbl(b) ∈ L.
By definition of treex, this is the case if and only if c ∈ B�b�, that is, if and only if
(cλ : b) holds.

—τ = τ1 × τ2 : if δ is not of the form (δ1, δ2)λ, then (δ : τ ) does not hold, and the root node
of treex(δ) cannot have label �× . Therefore, we also do not have treex(δ) ∈ �form(τ )�.

If δ = (δ1, δ2)λ, then we can see that the constraints on δ1 and δ2 imposed by
(δ : τ ) and those on treex(δ1) and treex(δ2) imposed by treex(δ) ∈ �form(τ )� match, and
conclude by induction hypothesis.

—τ = τ1 → τ2 : if δ is not a function, then (δ : τ ) cannot hold; and since the root of
treex(δ) does not have label �→, we do not have treex(δ) ∈ �form(τ )� either.

If δ = []λ, then (δ : τ ) is true, and we also have treex(δ) ∈ �form(τ )� since the root
node has label �→ and no children: the universal modalities in form(τ ) are satisfied
by default.

If δ = ((δ1, δ
′
2)λ1 :: fλ2 )λ, then treex(δ) is a tree with label �→ at the root and two

children. We can see that the constraints on the subtrees expressed by the formula
form(τ ) match the constraints of (δ : τ ), and we can conclude using the induction
hypothesis and Lemma 4.3.

—τ = τ1 ∨ τ2 : The result is immediate from the induction hypothesis.
—τ = ¬τ ′ : The result is immediate from the induction hypothesis and Lemma 4.3.
—τ = 0 : The result is immediate from the definitions.
—τ = α : The result is immediate from the definitions.
—τ = μv.τ ′ : what we need to prove is that �form(τ ′{τ/v})� = �form(τ )�; then, the result

is immediate from the induction hypothesis.

We have form(τ ) = μ(X+
v = form(τ ′), X−

v = negform(τ ′)) in X+
v .

Let V = {X+
v �→ U+, X−

v �→ U−} be the fixpoint valuation for this formula. We
have U+ = �form(τ )�.

Moreover, we have negform(τ ) = μ(X+
v = form(τ ′), X−

v = negform(τ ′)) in X−
v . Since

the fixpoint binding is the same, the fixpoint valuation is also the same, that is, V ;
thus we have U− = �negform(τ )�.

The difference between form(τ ′) and form(τ ′{τ/v}) is that, in the latter, every free
occurrence of X+

v has been replaced with form(τ ) and every free occurrence of X−
v

with negform(τ ). Therefore, from what we showed about V , we have �form(τ ′)�V =
�form(τ ′{τ/v})�. But since V is the fixpoint valuation, we also have �form(τ ′)�V = U+,
and we know that U+ = �form(τ )�. Hence, �form(τ )� = �form(τ ′{τ/v})�.

COROLLARY 5.7. τ1 � τ2 holds if and only if fullform(τ1 ∧ ¬τ2), or alternatively isd ∧
form(τ1) ∧ negform(τ2), is unsatisfiable.

5.4. Complexity

LEMMA 5.8. Provided two types τ1 and τ2, the subtyping relation τ1 � τ2 can be decided
in time 2O(|τ1|+|τ2|) where |τi| is the size of τi .

PROOF. The logical translation of types is performed by the function form(τ ). This
function does not involve duplication of subformulas of variable size except for the case
τ = μv.τ ′. Notice that, in this case, a naı̈ve implementation of form(τ ) might produce
exponentially long formulas for nested recursive types (because τ ′ occurs twice in the
translated formula). However, it is easy to generate a formula equivalent to form(τ )
but of linear size with respect to |τ | using a single polyadic fixpoint instead of nested
fixpoints. In other words, we replace nested recursion with mutual recursion. This is
done by modifying the translation in the following ways:
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—before translating, we rename all variables in τ so that their names are unique;
—form(μv.τ ) is now X+

v and negform(μv.τ ) is now X−
v ;

—we remember the bindings for each variable while processing the formula;
—the result is wrapped in a single top-level polyadic fixpoint that refers to all the

variables.

This means that each variable binding is still translated twice, once by form and once
by negform, but since all variables are now bound at the top level, none is translated
more than twice.

Since isd has constant size, the whole translation fullform(τ ) is linear in terms of
|τ |. For testing satisfiability of the logical formula, we use the satisfiability-checking
algorithm presented by Genevès et al. [2015], whose time complexity is 2O(n) in terms
of the formula size n.

6. IMPLEMENTATION AND PRACTICAL EXPERIMENTS

In this section, we report on some interesting lessons learned from practical experi-
ments with the implementation of the system in order to prove relations in the type
algebra. We first describe the main techniques used to implement the whole system,
the minimal necessary background for using the implementation, and then we review
and discuss several informative examples.

6.1. Implementation Principles

The algorithm for deciding the subtyping relation has been implemented on top of the
satisfiability solver described by Genevès et al. [2015]. Since this algorithm constitutes
the core of our implementation, we briefly review its essential principles here and
highlight its properties in the polymorphic setting.

Search universe and exponential complexity. The fundamental principle of the algo-
rithm is to look for a finite tree that satisfies a given logical formula. For this purpose,
it first constructs a compact representation of the relevant search universe in which to
look for a tree model satisfying the given formula. This representation, called the Lean
of the formula, is a set of subformulas of the initial formula. It is composed of all the
atomic propositions found in the formula, plus all distinct modal subformulas that can
be obtained by unrolling fixpoints, and four basic “topological” formulas that indicate
whether a given node admits some parent node, some child (or whether it is a leaf or
the root). This Lean set is important since its powerset precisely defines the search
universe in which the algorithm looks for trees. For this reason, the time complexity
of the algorithm is 2O(n) with respect to Lean size n. The acute reader may notice that
the Lean size of a large logical formula is usually smaller than the size of the formula
measured as the number of all connectives and operands. This is because the Lean
representation naturally eliminates duplicate subformulas and discards disjunctions
and conjunctions at top level.

Bottom-up search as a fixpoint computation. Once the Lean set is known, the algo-
rithm starts traversing all relevant tree nodes in an attempt to build a satisfying tree.
This search is performed in a bottom-up fashion, in the manner of a fixpoint compu-
tation. The algorithm considers a set of tree nodes whose subtrees have been proved
consistent. The algorithm begins with the empty set of nodes; at the first step, all possi-
ble leaves are added. Then, the algorithm repeatedly tries to add new tree nodes to this
set, until no more nodes can be added, that is, a fixpoint has been reached. It is easy
to observe that the algorithm terminates since, in the worst case (when the formula is
unsatisfiable) it explores all the relevant nodes, that is, all subsets of the Lean, which
is a finite set. At each step, whenever the algorithm is about to add a candidate node
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to the set of proved nodes, essential checks are performed to make sure that the higher
tree rooted at the candidate node is logically consistent with subtrees already proved at
earlier steps. In particular, modal formulas may impose constraints on successor nodes
that must be checked for consistency when two nodes are connected. These checks
are described formally by Genevès et al. [2015]. At each step of the computation, the
truth status of the initial formula given as input to the algorithm is tested at the
freshly proved nodes. If the formula is found to hold at this node, then the algorithm
immediately terminates with a proof that the formula is satisfiable. This step-by-step
approach offers several advantages. First, it opens the door to an implementation with
semi-implicit techniques; second, one can easily keep track of the current state of the
set of proved nodes at each step in order to generate small satisfying trees.

Use of semi-implicit techniques. An important observation about the fixpoint com-
putation is that, for a given candidate node to be added to the set of proved nodes,
the algorithm does not need to keep track of all possible subtrees that are consistent
with the candidate node. Instead, it is enough to find one proved subtree for each
successor of the candidate node. This observation has an important consequence: it
makes it possible to avoid the explicit enumeration of all proved subtrees into memory.
Instead, checking the existence of at least one proved subtree per required succes-
sor of a candidate node is enough. This makes it possible to encode the algorithm
with Boolean functions operating on a bit-vector representation of the Lean set (as
described by Genevès [2006]). This allows our implementation to use Binary Decision
Diagrams (BDDs) [Bryant 1986]. BDDs provide a canonical representation of Boolean
functions. Experience has shown that this representation is very compact for very large
Boolean functions. Furthermore, the effectiveness of operations over BDDs is notably
well known in the area of formal verification of systems [Clarke et al. 1999], in the con-
text of simpler (less expressive) modal logics like K [Pan et al. 2006], and even in the
context of much more complex problems that can be reduced to μ-calculus satisfiability
testing, such as the problem of automatically detecting the impacts of a schema change
on a regular query [Genevès et al. 2009]. Here again, the use of BDDs constitutes one
of the major reasons why our approach performs well in practice.

Generation of counterexamples. The role of the satisfiability-solving algorithm is not
limited to the partitioning of the set of logical formulas based on whether they are
satisfiable or not: in addition, it can generate a sample satisfying tree for satisfiable
formulas. Technically, once the formula is found satisfiable at some node, the imple-
mentation reconstructs a sample satisfying tree in a top-down manner, starting from
the root of the satisfying tree. It actually attempts to generate one of the smallest possi-
ble satisfying trees. For that purpose, a pointer to the current state of the set of proved
nodes is kept at each step of the fixpoint computation. During the reconstruction of
the satisfying tree, smaller proved subtrees are then preferred, resulting in a minimal
satisfying tree.

In the context of our type algebra, the validity of a subtyping statement of the form
τ1 � τ2 is checked by testing for the unsatisfiability of ψ = isd∧ form(τ1)∧negform(τ2). If
ψ is unsatisfiable, then τ1 is a subtype of τ2. If ψ is satisfiable, then the tree satisfying
ψ generated by the algorithm represents a counterexample for the relation τ1 � τ2.
Such a sample tree often happens to be of great practical value in order to ease the
understanding of the reasons why the relation does not hold.

In the polymorphic setting, a counterexample is, in principle, according to the se-
mantics, a labelled tree. However, as mentioned in Section 5.2, whenever a formula is
satisfiable, there always exists an infinity of possible labellings that satisfy it. There-
fore, rather than proposing just one labelled tree, the solver gives a minimal tree
together with labelling constraints representing a set of labellings that make that
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particular tree a counterexample5. Namely, for each variable α, every node will be la-
belled with α to indicate that its set of labels must include α, with ¬α to indicate that
it must not, or with nothing if label α is irrelevant for that particular node. This allows
an easier interpretation of the counterexample in terms of assignments: the subtyping
relation fails whenever the assignment for each variable α contains all the trees whose
root is marked with α and none of those whose root is marked with ¬α.

6.2. Using the Implementation

Our implementation is publicly available. Interaction with the system is offered
through a user interface in a Web browser. The whole system is available online at:

http://tyrex.inria.fr/websolver/

Concrete Syntax for the Type Algebra. All the examples in the section that follows
can be tested in our online prototype. For this purpose, the following table gives the
correspondence between the syntax used in the article and the syntax that must be
used in the implementation:

Article Syntax Implementation Syntax
Type variables α, β, γ a, b, g
Basic types b B
Type constructors ×,→ *, ->
Recursion variable v $v
Recursive types μv.τ rectype($v,τ)
Bottom and top types 0, 1 F, T
Logical connectives ∧,∨,¬,⇒ &, |, ~, =>
Subtyping ¬(τ1 � τ2) nsubtype(τ1,τ2,basic constraint)

The main operation nsubtype has 3 parameters: the two types to be compared, and the
formula basic constraint described in Section 4.2. Note that, in the examples, it is not
necessary for this formula to respect Definition 4.1 strictly if we know what we are
doing. In particular, if only a few basic types are relevant to the example we want to
try and we are not interested in the others, then we can omit these others from the
formula and allow a basic constant to have no basic type at all. We thus will interpret
it as having none of the relevant basic types. The extreme case of this is if we are not
interested in basic types at all, in which case we can omit the basic constraint parameter
completely; this is interpreted as basic constraint = �.

Response from the solver. The solver answers either that the formula is unsatisfiable
(i.e., subtyping holds) or that it has found a counterexample. This counterexample
is given as a binary tree labels (left-subtree, right-subtree) where labels is
a labelling constraint as described at the end of Section 6.1, with special symbols
translated as follows: �→ is FUNCTION, �× is PAIR, �� is ERROR, and CONSTANT means
¬�→ ∧ ¬�× ∧ ¬�� .

6.3. Examples and Discussion

The goal of this section is to illustrate through some examples how our logical setting
is natural and intuitive for proving subtyping relations. For example, one can prove
simple properties such as this:

(α → γ ) ∧ (β → γ ) � (α ∨ β) → γ (6)

This is formulated as follows:
nsubtype((_a -> _g) & (_b -> _g), (_a | _b) -> _g)

5There is no guarantee that all the constraints given are necessary for the tree to be a counterexample;
however, they are always sufficient.
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Fig. 5. Logical translation tested for satisfiability.

which is automatically compiled into the logical formula shown in Figure 5 and given
to the satisfiability solver that returns:
Formula is unsatisfiable [16 ms].

which means that no satisfying tree was found for the formula, or, in other words, that
the negation of the formula is valid. The satisfiability solver is seen as a theorem prover
since its run built a formal proof that Property (6) holds.

Lists. Vouillon [2006] uses simple examples with lists to illustrate polymorphism
with recursive types. For instance, consider the type of lists of elements of type α:

τlist = μv.(α × v) ∨ nil

where “nil” is a singleton type. The type of lists of an even number of such elements
can be written as:

τeven = μv.(α × (α × v)) ∨ nil.

By giving the following formula to the solver:
nsubtype(rectype($v, (_a * _a * $v) | _NIL),

rectype($v, (_a * $v) | _NIL))

which is found unsatisfiable, we prove that

τeven � τlist.

Note that here we used a basic type, _NIL, but did not give a basic constraint. This
means that there exist both constants that have type _NIL and constants that do not
have it, which is what we want.

If we now consider the type of lists of an odd number of elements of type α:

τodd = μv.(α × (α × v)) ∨ (α × nil),

we can check additional properties in a similar manner:

(τeven ∨ τodd � τlist) ∧ (τlist � τeven ∨ τodd)
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Example (1) of the introduction allows us to illustrate the use of basic constraint.
There are two ways that we can consider it: Bool could be an abbreviation for true ∨
false where true and false are basic types. Then basic constraint just needs to say
that true, false, and nil are pairwise disjoint (but there also exist basic constants
that belong to none of these three types). This would be written as:
list() = rectype($l, (_a * $l) | _NIL);
odd() = rectype($o, (_a * _a * $o) | (_a * _NIL));
even() = rectype($e, (_a * _a * $e) | _NIL);
bool() = _TRUE | _FALSE;
basic_constraint() = (_NIL => ~_TRUE & ~_FALSE) &

(_TRUE => ~_NIL & ~_FALSE) &
(_FALSE => ~_NIL & ~_TRUE);

nsubtype((odd() -> _TRUE) & (even() -> _FALSE), list() -> bool(), basic_constraint())

Or Bool could be a basic type, whose relation with types true and false is defined in
basic constraint:
list() = rectype($l, (_a * $l) | _NIL);
odd() = rectype($o, (_a * _a * $o) | (_a * _NIL));
even() = rectype($e, (_a * _a * $e) | _NIL);
basic_constraint() = (_BOOL <=> _TRUE | _FALSE) &

(~_NIL | ~_BOOL) &
(~_TRUE | ~_FALSE);

nsubtype((odd() -> _TRUE) & (even() -> _FALSE), list() -> _BOOL, basic_constraint())

In both cases, the formula is found unsatisfiable by the solver, which proves the validity
of the subtyping Statement (1).

Hints about nontrivial relations. Castagna and Xu [2011, section 2.7] give some
examples of nontrivial relations that hold in the type algebra. For instance, the reader
can check that the types 1 → 0 and 0 → 1 can be seen as extrema among the function
types:

1 → 0 � α → β and α → β � 0 → 1.

Our system also permitted detection of an error in a draft version of the work of
Castagna and Xu [2011] and provided some helpful information to the authors in order
to find the origin of the error and make corrections. Specifically, the following relation
was considered:

(¬α → β) � ((1 → 0) → β) ∨ α. (7)

The authors explained how this relation was proved by their algorithm. However, by
encoding the relation in our system, we found that this relation actually does not hold.
This is formulated as follows in our system:
nsubtype (~_a -> _b, ((T -> F) -> _b) | _a)

When this formula is given to the satisfiability solver, the following counterexample
is returned:
FUNCTION ~_a(PAIR(FUNCTION _a, ERROR), FUNCTION ~_b)

This corresponds to a domain element

(([]λ1,�λ2 ) :: []λ3 )λ

such that α /∈ λ, α ∈ λ1 and β /∈ λ3.
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[] represents the function that always diverges. This function has the property that
it belongs to any arrow type; it is therefore often seen in counterexamples. Indeed, it
accepts any argument and never returns a result (so that it is safe to consider its result
to be of any type). Here we can interpret []λ1 as a copy f of this function that belongs
to the interpretation of α. The whole term then represents a function that is not in �α�
and that to f associates an error, while diverging on any other input.

Note that the constraint β /∈ λ3 is superfluous, which we can know because λ3 is
on an intermediary node, and as can be confirmed in the solver by adding “& <2>_b”
besides the nsubtype statement to enforce that the right child of the root has label β.

Now, why is it a counterexample to (7)? As the function diverges but on one input
f and that input is in �α�, it is vacuously true that on all inputs in �¬α� for which it
returns a result, this result is in �β�. Thus, it does have the type on the left-hand side.
However, it does not have type α, nor does it have type ((1 → 0) → β). Indeed, f does
have type 1 → 0 and our counterexample function associates to it an error, which is
not in �β�.

In Section 5.1, we introduced Example (3), which we said should not hold with a
sensible subtyping relation. We can check that it does not hold in our system:
basic_constraint() = ((_INT | _OTHER) & (~_INT | ~_OTHER));
nsubtype(_INT * _a, (_INT * ~_INT) | (_a * _INT), basic_constraint())

The satisfiability solver produces the following counterexample:
PAIR ~_INT ~_OTHER(CONSTANT _INT ~_a ~_OTHER, CONSTANT _INT _a ~_OTHER)

This counterexample represents a pair of two integers, in which the first member of
the pair is not in �α� but the second member is. This shows that, with our definition,
type int is not really indivisible: some integers have type α and others do not.

Recursive arrow types and variables. A case in which recursive arrow types may
naturally appear is self-application. Let us consider the function f = λx.xx. The type
of x must allow the function x to be applied to itself; therefore, it must be an arrow
type that is a subtype of its own argument type. Let α be the expected result type of
our function. x must have a type τ such that τ � τ → α holds.

One such type is the recursive type τ = μv.v → α (obtained by simply replacing �
with =). With this type for x, the type of f is τ → α, which happens to be the same as τ
(this can be checked in our solver, but is also obvious because it is exactly the unfolding
of the recursion).

Another way of typing f is by using an intersection type: let β be the type of x, then
x must also have type β → α, and therefore it must have type τ1 = β ∧ (β → α). Our
solver allows us to check that we have τ1 � τ1 → α. Then f has type τ2 = τ1 → α. An
interesting question we can ask is: how do τ1 and τ2 relate to τ?

The answer provided by our solver is that they are unrelated, mainly because τ does
not refer to variable β. If we add this variable, we can do some interesting further
comparisons: let τ ′ = μv.β ∧ (v → α). We then have τ1 � τ ′ � τ2.

As a last example of the insight our solver can give on properties of types that are
somehow counterintuitive, let us consider τ ′′ = μv.β ∨ (v → α). Our solver tells us that
we have τ ′ � τ ′′; but it also tells us that both τ ′ and τ ′′ are uncomparable with τ . The
counterexamples it gives for τ ′ � τ and τ � τ ′′ are the following:
FUNCTION _b(PAIR(FUNCTION ~_b, ERROR), FUNCTION _a)
and
FUNCTION ~_b(PAIR ~_b(CONSTANT _b, ERROR), FUNCTION ~_a)

The first counterexample represents a function that has type β and accepts any argu-
ment except some diverging function that does not have type β. This value does have
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type τ ′, because it accepts any argument that has both type τ ′ and type β, and it never
returns so that its result can be assumed to have type α. But it does not have type
τ , since the one argument it rejects has itself type τ (the diverging function has any
arrow type). However, it has type τ ′′, because of the β at top level, which is sufficient.

The second counterexample represents a function that does not have type β and
accepts any argument except some constant of type β. Therefore, it does not have type
τ ′′: it rejects an argument of type β and does not have type β itself. But it does have
type τ , because the only argument it rejects is not a function.

7. RELATED WORK

We review here related works while recalling how the introduction of XML progres-
sively renewed the interests in parametric polymorphism.

The seminal work by Hosoya et al. [2005] on a type system for XML applied the
theory of regular expression types and finite tree automata in the context of XML.
The resulting language XDuce [Hosoya and Pierce 2003] is a strongly typed language
featuring recursive, product, intersection, union, and complement types. The subtyping
relation is decided through a reduction to containment of finite tree automata, which is
known to be in EXPTIME. This work does not support function types or polymorphism,
but provided a ground for further research.

In particular, Frisch et al. [2008] provide a basic introduction to semantic subtyping.
Semantic subtyping focuses on a set-theoretic interpretation as opposed to traditional
subtyping through direct syntactic rules. Our logical modeling presented in Section 4
naturally follows the semantic subtyping approach as the underlying logic has a set-
theoretic semantics. Benzaken et al. [2003] added function types to the semantic sub-
typing performed by XDuce’s type system. This notably resulted in the CDuce language.
However, CDuce does not support type variables, thus lacks polymorphism.

Vouillon [2006] studied polymorphism in the context of regular types with arrow
types. Specifically, he introduced a pattern algebra and a subtyping relation defined by
a set of syntactic inference rules. A semantic interpretation of subtyping is given by
ground substitution of variables in patterns. The type algebra has the union connective
but lacks negation and intersection. The resulting type system is thus less general than
ours.

Polymorphism was also the focus of the work of Hosoya et al. [2009]. Castagna and
Xu [2011] explain that, at that time, a semantically defined polymorphic subtyping
appeared to be out of reach, even in the restrictive setting of Hosoya and Pierce [2003],
which did not account for higher-order functions. This is why Hosoya et al. [2009]
fell back on a somewhat syntactic approach linked to pattern-matching that seemed
difficult to extend to higher-order functions. Our work shows that such an extension
was possible using similar basic ideas, only slightly more abstract.

The work of Calcagno et al. [2005] uses a spatial logic for trees as types for a lambda
calculus. Their spatial logic is a fragment of the ambient logic introduced by Cardelli
and Gordon [2000]. They show that validity is decidable, but the computational com-
plexity is unknown (between PSPACE and nonelementary). No implementation is re-
ported.

The most closely related work is that of Castagna and Xu [2011], which solves the
problem of defining subtyping semantically in the polymorphic case for the first time,
and addresses the problem of its decision through an ad-hoc and multistep algorithm.
Our approach also addresses the problem of deciding their subtyping relation and
solves it through a more direct, generic, natural, and extensible approach since our
solution relies on a modeling into a well-known modal logic (the μ-calculus) and on
using a satisfiability solver such as the one proposed by Genevès et al. [2015]. This
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logical connection also opens the way for extending polymorphic types with several
features found in modal logics.

The work of Bierman et al. [2010] follows the same spirit as ours: type checking
is subcontracted to an external logical solver. An SMT solver is used to extend a
type checker for the language Dminor (a core dialect for M) with refinement types
and type tests. The type checking relies on a semantic subtyping interpretation, but
neither function types nor polymorphism are considered. Therefore, their work is not
comparable to ours.

The present work builds on the previous work of Genevès et al. [2015] since we use
the satisfiability-checking algorithm defined in that article to decide the subtyping
relation.

8. CONCLUSION

The main contribution of this article is to define a logical encoding of the subtyping
relation defined by Castagna and Xu [2011], yielding a decision algorithm for it. We
prove that this relation is decidable with an upper-bound time complexity of 2O(n), where
n is the size of types being checked. In addition, we provide an effective implementation
of the decision procedure that works well in practice.

This work illustrates a tight integration between a functional language type checker
and a logical solver. The type checker uses the logical solver for deciding subtyping,
which in turn provides counterexamples (whenever subtyping does not hold) to the
type checker. These counterexamples are valuable for programmers, as they represent
evidence that the relation does not hold. As a result, our solver represents a very
attractive back end for functional programming language type checkers.

This result pushes the integration between programming languages and logical
solvers to an advanced level. The proposed logical approach is not only capable of
modeling higher-order functions, but it is also capable of expressing values from se-
mantic domains that correspond to monadic second-order logics such as XML tree
types. This shows that such logical solvers can become the core of XML-centric func-
tional languages type checkers such as those used in CDuce or XDuce.
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