

A Comparative Analysis of Attitude Estimation for Pedestrian Navigation with Smartphones

Thibaud Michel,

Hassen Fourati, Pierre Genevès, Nabil Layaïda

Université Grenoble Alpes, France

Indoor Positioning and Indoor Navigation October 13-16, 2015 - Banff, Alberta, Canada

Improving Augmented Reality with more Precise Localization

Goal

 Obtaining precise localization and orientation of the smartphone

Difficulties

- Magnetic perturbations
- External accelerations
- Hard to compare algorithms
- No ground truth to evaluate algorithm precision

Outline

Introduction

A set-up for attitude estimation algorithms evaluation

- Ground truth using a motion lab
- Several motions using a smartphone
- A comparative study of 6 well-known algorithms
 - Theoretical comparison
 - Experimental evaluation
 - **Conclusions and perspectives**

Roll (\$) ~ X, (North

Attitude

Attitude is the orientation of the Smartphone with respect to the Earth local frame

E_y (North)

E_x (East)

Attitude Estimation Impact

How judge the attitude precision ?

T. Michel, IPIN'15, 13-16 October - Banff, Alberta, Canada

Using a Motion Lab to establish a Ground Truth

- 20 infra-red cameras, connected to Qualisys system, precision error < 1°</p>
- Motion lab frame aligned with earth frame
- Hypotheses: Magnetic field is considered as static (vary from $40\mu T$ to $43\mu T$)

Device

- Smartphone: Nexus 5
 - InvenSense MPU6515 (Accelerometer, Gyroscope) at 200Hz
 - AKM AK8963 (Magnetometer) at 60Hz
 - Smartphone's handler with markers
 - Designed for this experiment
 - Handler and smartphone have the same frame

Android sensors recorder

Record raw and calibrated data from sensors

Datasets retrieved

- 4 motions, 180 seconds recording for each
- Data from sensors
 - timestamp
 - accelerometer raw
 - gyroscope raw
 - magnetometer raw
 - gyroscope calibrated
 - magnetometer calibrated
- Data from motion lab
 - timestamp
 - quaternions

T. Michel, IPIN'15, 13-16 October - Banff, Alberta, Canada

Outline

Introduction

A set-up for attitude estimation algorithms evaluation

- Ground truth using a motion lab
- Several motions using a smartphone
- A comparative study of 6 well-known algorithms
 - Theoretical comparison
 - Experimental evaluation
 - Conclusions and perspectives

Overview of Compared Algorithms

Authors	Designed for	Method
Choukroun et al., IEEE Transactions on Aerospace and Electronic Systems, vol 42, no. 1, 2006	Aerospace	Kalman Filter
Mahony et al., <i>IEEE Transactions on Automatic Control</i> , vol 53, p1203-1218, 2008	UAV	Complementary Filter
Martin et al., <i>Control Engineering Practice</i> , vol 18, p712-722, 2010	UAV	Observer
Madgwick et al., IEEE Rehabilitation Robotics, 2011	Pedestrian	Gradient Descent Algorithm
Fourati et al., IEEE Sensors Journal, p233-244, 2011	Foot-mounted	Complementary Filter
Renaudin et al., Sensors, vol.14, no. 12, 2014	Pedestrian	Extended Kalman Filter

Algorithms design

- If the smartphone is static:
 - $\longrightarrow acc_{ref} = \begin{bmatrix} 0 & 0 & -9.8 \end{bmatrix}$
- If there is no magnetic perturbation, earth magnetic field* can be used:

 $\longrightarrow mag_{ref} = \begin{bmatrix} 0 & m_2 & m_3 \end{bmatrix}$

 m_2 and m_3 can be found using World Magnetic Model (WMM)

Problem of the design

T. Michel, IPIN'15, 13-16 October - Banff, Alberta, Canada

 $mag_{ref} =$

Comparison of Algorithms

Author	> Acceleration Reference	Magnetic Field Reference
Choukroun et al.	No recommendation	No recommendation
Mahony et al.	No recommendation	No recommendation
Martin et al.	Use $acc_{ref} = \begin{bmatrix} 0 & 0 & -9.8 \end{bmatrix}$	Use following trick: $acc_{ref} \wedge mag_{ref}$ to prevent deviation on pitch and roll
Madgwick et al.	Use $acc_{ref} = \begin{bmatrix} 0 & 0 & -9.8 \end{bmatrix}$	Use following trick: $mag_{ref} = \hat{q}^{-1} \times mag \times \hat{q}$ This consider magnetic field as static
Fourati et al.	Use $acc_{ref} = \begin{bmatrix} 0 & 0 & -9.8 \end{bmatrix}$ \rightarrow gain is modified during high accelerations	Use $mag_{ref} = \begin{bmatrix} 0 & m_2 & m_3 \end{bmatrix}$
Renaudin et al.	Use $acc_{ref} = \begin{bmatrix} 0 & 0 & -9.8 \end{bmatrix}$ There is no Kalman Filter update during high accelerations	Use $mag_{ref} = \hat{q}^{-1} \times mag \times \hat{q}$ during low magnetic field variations. There is no Kalman Filter update in others cases

Outline

Introduction

A set-up for attitude estimation algorithms evaluation

- Ground truth using a motion lab
- Several motions using a smartphone
- A comparative study of 6 well-known algorithms
 - Theoretical comparison
 - Experimental evaluation
 - Conclusions and perspectives

Results and Analyses

Quaternion Angle Difference is used for precision errors:

$$\theta = \cos^{-1}(2\left\langle \hat{q}, q_{ref} \right\rangle^2 - 1)$$

 q_{ref} is the quaternion provided by Motion Lab \hat{q} is the quaternion to be compared

Mean Absolute Error (MAE)

 $MAE = \frac{1}{n} \sum_{i=1}^{n} | \theta_i |$

All results can be found at http://tyrex.inria.fr/mobile/benchmarks-attitude/benchmarks.html

Calibration

Calibration					
	Uncalibrated	Android Calib.*	Own Calib. **		
Mean of MAE	92.6°	10.5°	5.3°		

* Gyroscope and magnetometer calibration from Android (black-box)

** Magnetometer calibration from: Renaudin et al., New method for magnetometers based orientation estimation, 2010 Acceleration calibration from: Frosio et al., Autocalibration of MEMS accelerometers, 2013

At least magnetometer calibration should be done due to internal components magnetic field

- Own calibrations are better than Android's one
- Accelerometer calibration slightly enhance the precision by 1°

External Accelerations

Attitude Estimation According to External Acceleration (MAE)							
	Texting	Phoning	Back Pocket	Swinging	Mean		
Mean absolute of External Acc. norms	0.60 m.s ⁻²	0.52 m.s ⁻²	1.14 m.s ⁻²	1.58 m.s ⁻²	0.96 m.s ⁻²		
Mahony	5.8°	5.0°	5.5°	7.5°	6.0°		
Madgwick	4.7°	4.4°	6.8°	8.1°	6.0°		
Choukroun	3.5°	4.3°	5.0°	9.1°	5.5°		
Renaudin	2.4°	3.0°	8.5°	7.6°	5.4°		
Martin	3.1°	3.9°	5.0°	7.1°	4.8°		
Fourati	3.6°	4.6°	5.2°	5.3°	4.7°		
Mean*	3.8°	4.2°	6.0°	7.5°	5.4°		
Android**	3.8°	22.1°	7.0°	4.8°	9.4°		

* Mean is provided without value from Android algorithm

** Results provided by embedded algorithm with Android calibration (black box)

Magnetic Deviations

6 magnets put at 19s and removed at 27s

 For all algorithms Yaw is more impacted than Pitch and Roll

- Android and Renaudin's algorithms are not impacted by magnetic deviations during this test.
- Martin's algorithm is only impacted on yaw
- *Fourati*'s algorithm recover faster than others

Conclusions and Perspectives

Summary

- A set-up for attitude estimation algorithms is provided. This set-up can be reused by anyone
- 6 algorithms + Sensor's black box have been compared

Conclusions

- Open problems:
 - Supporting external accelerations, it can be partially corrected by modifying gain
 - Dealing with magnetic deviations, only variations of magnetic field can be detected
- Calibration from Renaudin's and Frosio's papers enhances attitude precision by 5°
- Quality of quaternions from compared algorithms is better than Android API's ones

Perspectives

- Enrich the set-up by recording more datasets
- Investigate hybrid algorithms (QSF detector, dynamic gain...)

End

Thank you.

http://tyrex.inria.fr/mobile/benchmarks-attitude

T. Michel, IPIN'15, 13-16 October - Banff, Alberta, Canada

Comparison based on Algorithms

Sensors biases and noises considerations						
	Gyroscope		Accelerometer		Magnetometer	
	Bias	Noise	Bias	Noise	Bias	Noise
Choukroun et al.	Χ*	Х		Х		Х
Mahony et al.	Х					
Martin et al.	Х		Х		Х	
Madgwick et al.	Х					
Fourati						
Renaudin et al.	Х	Х	Х	Х		Х

*not implemented in our version

Number of parameters of each algorithm						
Choukroun	Mahony	Martin	Madgwick	Fourati	Renaudin	
0	2	6	2	0	2	

Processing Time

Processing Time (Quaternion/sec)							
Choukroun Mahony Martin Madgwick Four							
Quaternion gen./sec*	2148	2762	1257	4052	2559		
Relative to the best	1.88	1.47	3.22	1.00	1.59		

* Benchmarks have been done with matlab

- Madgwick is the best (no matrix inversion)
- Martin is really slow